Ecole IN2P3 Du détecteur à la mesure

Institut National de Physique Nucléaire et de Physique des Particules

Détecteurs bolométriques refroidis: 1. Principes

Pierre de Marcillac

Institut d'Astrophysique Spatiale d'Orsay

Le bolomètre : une personnalité difficile à cibler !

Masse ?	$mg \rightarrow kg$: une même technologie sur 6 ordres de grandeurs en masse !
Constitution cible ?	métaux, isolants, semi-conducteurs, supraconducteurs
Mesure ?	de l'eV à 100 GeV; de 10^{-18} W au μ W à mieux que 1%
Religion ?	éclectique ! particules ionisantes, non-ionisantes, photons submm→gamma
Hobby ?	tous sports d'hiver: aime particulièrement le froid !
Sensibilité ?	extrême à froid (ne craint pas les engelures) Si sensible qu'on peut envisager 600 applications
■ Âge ?	125 ans (IR) ou 20 ans (particules)
Habitât ?	colonise tunnels, labos, montagnes, satellites
Distinctions ?	capable de
	pouvoirs de résolutions > 1000 en spectroscopie X, alpha
	mesurer des μK (corps noir cosmologique) et demain des fractions de μK
	mesurer des durée de vie rarissimes de radioisotopes de 10¹⁹ à 10²⁶ ans

En couverture: bolomètre scintillant de 46g en germanate de bismuth (BGO) avec son détecteur optique, lequel fonctionne également en bolomètre (disque Ge de 20mm de diamètre et de 100µm d'épaisseur; cliché IAS; 2002)

Deux références utiles...

Un cours (1994)

Les bolomètres pour la détection de particules

par Denis L'Hôte

École Internationale Joliot-Curie de Physique Nucléaire Maubuisson, 1994 La première monographie (2005 !)

- Historique
- Principes fondamentaux de la détection
 - pourquoi refroidir ?
- Techniques cryogéniques courantes en bolométrie
- Sélection des matériaux du bolomètre
 - par leurs propriétés à très basse température
- Suivi thermométrique du bolomètre
 - Techniques, principes de lecture
- Bolomètre polarisé
 - Bruits
 - Caractéristiques
- Environnement du bolomètre en laboratoire
- Remerciements
- Références
- Annexes

Liste des cours Écoles d'automne thématiques: « Détection de rayonnements à très basse température » formation permanente CNRS /CEA

 $1991 \rightarrow 2002$

Historique

"Du détecteur à la mesure"

Roscoff / 13-21 juin 2007

Historique

- Le premier bolomètre: Samuel Langley (1881)
 - Étymologie:
 - bolè=radiation, trait, trajectoire
 cf. discobole, bolide, parabole, balistique
 - Metron=mesure

- « J'ai essayé d'inventer quelque chose de plus sensible que la thermopile, qui soit en même temps aussi précis, et qui soit essentiellement un « mètre » et non un simple indicateur de la présence d'une faible radiation. Cette distinction est importante. »
- Vise le proche infrarouge & le spectre solaire à ses débuts
- Autres appellations (prêtant à confusion !): balance actinique (très désuet), radiomètre, (vrai)calorimètre
- « Magnitude bolométrique » \rightarrow absence de sélectivité spectrale

Le bolomètre réalise la **conversion d'énergie incidente en agitation thermique** et la **mesure électrique de l'élévation de température** associée.

(*) Absorbeur: Ruban de Pt (4 μ m), noirci; Lecture: R(T) dans un pont de Wheatstone

Pierre de Marcillac IAS, Orsay

Repères chronologiques

- 1881: 1^{er} bolomètre (S. Langley)
- 1903: Radioactivité & chaleur (P. Curie et André Laborde)
 - P limite mesurable≈10⁻⁴ W
- 1908: Liquéfaction de l'hélium (K. Omnes)
- 1912: Théorie de la chaleur spécifique (Debye, complétant Einstein)
- 1935: sensibilité \uparrow quand T \downarrow (F. Simon)
- 1947: théorie du bolomètre (R. C. Jones)
- 1951: réfrigérateur à dilution (Fritz London)
- 1961: 1^{er} bolomètre Ge à 1.2K (F. Low)
 - essor de l'astronomie IR
- 1974: saut de T à 15mK sur cosmiques (T. Niinikosky)
- 1984: premier spectre X à 1.2K (D. McCammon et al.)
- 1985: premier spectre alpha à 1.2K (N. Coron et al.)

Pierre de Marcillac IAS, Orsay

Radioactivité & calorimétrie: une association centenaire

Pierre Curie et André Laborde CR Acad. Sciences, mars 1903 SUR LA CHALEUR DÉGAGÉE SPONTANÉMENT PAR LES SELS DE BADIUM. En commun avec A. LABORDE. RaCl, Comptes rendus de l'Académie des Sciences, t. CXXXVI, p. 673, 0.17 g séance du 16 mars 1903. Nous avons constaté que les sels de radium dégagent de la cha-

leur d'une manière continue. Un couple thermo-électrique, fer-constantan, dont une des sou-

dures est entourée de chlorure de baryum radifère, et dont l'autre est entourée de chlorure de baryum pur, accuse en effet une différence de température entre les deux corps.

✓ en 1903: 10⁻⁴ W (100 µW) ✓ en 2003: 10⁻¹⁸ W (en 1 s)

Bolomètres \rightarrow gain de 14 ordres de grandeur en 100 ans !

Pierre de Marcillac IAS, Orsay

F. Simon (dans Nature, dès 1935)

Application of Low Temperature Calorimetry to Radioactive Measurements

It is often of importance to determine in absolute measure energy changes connected with radioactive transformations, but only in a few cases has it been possible to employ calorimetric methods for this purpose, since in general the amounts of energy liberated in unit time are too small. The sensitivity of calorimetric measurement can be increased, however, by many orders of magnitude by working at very low temperatures, and it may be worth while to point this out, as low temperature technique is now within the reach of non-specialised laboratories.

With such increased sensitivity, various problems can be attacked, and experiments in this direction are in progress at the Clarendon Laboratory.

F. SIMON.

Clarendon Laboratory, Oxford. March 28.

Pierre de Marcillac IAS, Orsay

Principes fondamentaux de la détection

•pourquoi refroidir ?

"Du détecteur à la mesure"

Roscoff / 13-21 juin 2007

Principe de la détection

Roscoff / 13-21 juin 2007

Pierre de Marcillac IAS, Orsay

Principe de la détection

□ G = conductance thermique (« fuite » thermique)

□ « encaisse » le gradient thermique T_b-T_{bain} lié à la puissance de polarisation P $P = G \times (T_b - T_{bain})$

→couplage du détecteur à la référence T_{bain} (platine réfrigérateur)

 \Box évacue le surplus d'énergie (reset thermique) avec la constante de temps $\approx \tau_{th}$

Détection de particules ou de photons: un \approx même détecteur !

- détection de particules: ~ tout est permis !
- + système de suspension (non représenté)

Pierre de Marcillac IAS, Orsay

Palette de bolomètres (IAS)

Le bolomètre « idéal »

Pierre de Marcillac IAS, Orsay

Quand la réalité n'est pas très loin du modèle...

Le bolomètre, même isotherme à T, échange de l'énergie en permanence avec le réservoir, via la fuite thermique... \rightarrow son énergie interne U fluctue !

- 1) Absence de fenêtre \rightarrow pas de « straggling »
- 2) Choix de la cible
- 3) Récupération de la majeure partie de l'énergie
- 4) Résolution en énergie
- 5) Sensibilité
- 6) Linéarité
- 7) Pas (ou très peu) de sélectivité de la réponse
 - sur particules
 - \rightarrow Particules non ionisantes (reculs, ions lourds, molécules) !
 - spectrale (détection de photons)
- 8) Calorimétrie absolue possible sur faisceau
 - Intégration
- 9) Peu sensibles aux dommages sous irradiations

1) Lenteur

 $\tau \approx qq. 10 \mu s \rightarrow qq. 100 ms$

c'est intrinsèque !

Taux de comptage max \approx qq. 10kHz au grand maximum*

* au détriment de la résolution

Raison:

la chaleur ne peut pas se propager plus vite que la vitesse du son dans le milieu (qq. Km/sec) ¤

¤ les bolomètres métalliques (encore émergeants en 2005) seront sans doute les plus rapides (vitesse des porteurs>> vitesse du son)

2) Cryogénie indispensable

- \rightarrow Maîtrise des techniques de réfrigération
- \rightarrow Des solutions «pousse bouton » arrivent sur le marché !

Techniques cryogéniques courantes en bolométrie

"Du détecteur à la mesure"

Roscoff / 13-21 juin 2007

La course aux basses températures...

Pierre de Marcillac IAS, Orsay

Techniques de réfrigération en continu

□ des solutions « tout électrique » commencent à exister (adaptées pour tous bolomètres ?)

Pierre de Marcillac IAS, Orsay

Pompage Hélium-4 (T \rightarrow 1.2K)

Cryostat « CDL » conçus à l'IAS

Autonomie : 48 heures à 4,2 K.

Dimensions de la chambre optique refroidie: D = 140 mm ; h = 52 mm; Poids : 11 Kg Précision d'alignement : la chambre optique se déplace de moins de 110 microns pour une Licence ABTSorime (www.abtsorime.fr) inclinaison de 90°

Pompage Hélium-3 (T→300mK)

L'hélium-3 est très cher [résidu atomique de $n+^{6}Li \rightarrow ^{3}H (+^{4}He) \rightarrow ^{3}He$] : on ne le perd pas !

Capillaire inox fine paroi assez fragile !

Mini-réfrigérateur (conception J.P. Torre & G. Chanin) :

- ³He sous 100 bar à 300K
- cryopompe (P) à charbon actif
- platine détecteur sur évaporateur (E)
- cycle
 - 1) chauffage pompe \rightarrow 25K; liquéfaction par gravité dans E

0.7

Ballons:

Satellites:

OK

NON

2) évaporation

Pierre de Marcillac IAS, Orsay

"Du détecteur à la mesure"

Roscoff / 13-21 juin 2007

Réfrigérateurs à dilution

1. Thermodynamique

Pierre de Marcillac IAS, Orsay

Réfrigérateurs à dilution

2. Schéma de principe

Réfrigérateurs à dilution 3. Offre commerciale

27

Roscoff / 13-21 juin 2007

Réfrigérateurs à dilution 4. canne IAS

- ✓ conception P. Pari (CEA/SPEC)
- ✓ transportable (\rightarrow ROSEBUD; Espagne)
- ✓ sans pot 1.5K
- ✓ $P_{injection}$ =0.6 bar; $P_{aspiration}$ =0.6 torr
- ✓ 20µW @100mK
- ✓ T_{limite} =20 mK obtenue en ½ journée depuis 1.2K

6 bolomètres

Réfrigérateurs à dilution

5. version spatialisable

✓ dilution à cycle ouvert (gaz non récupéré)

✓ conception CRTBT (Grenoble)

✓ ³He et ⁴He sont injectés à partir de réserves HP dans un capillaire (Ø 300µm): des bulles de concentré maintenues par la tension superficielle se forment dans la phase diluée. Production de froid à l'interface: T_{limite} =100mK

 ✓ validé sur ARCHEOPS (22 bolomètres submm; manip CMB sur ballon stratosphérique)

 ✓ solution retenue pour refroidir l'instrument HFI sur le satellite Planck (ESA)

Circuit démonstrateur 0.1K à l'IAS

Réfrigérateurs à dilution

6. commercial sans ⁴He_{liq}

www.vericold.com

- ✓ Solution sans fluide cryogénique
- ✓ Réfrigération 200µW@100mK
- ✓ Tbase ≤ 20mK (en 24h)
- ✓ chambre expérimentale
 - ✓H: 20 cm x Ø 20 cm
- ✓ pré-refroidissement:
 - ✓tube-pulsé (0.35W @ 4.2K)
 - ✓Consommation 6kW
- ✓ « extremely low vibrations »
- ✓ un seul vide interne
 - ✓ joint conventionnel O-ring
 - ✓ fermeture en 10mn

ADR: solutions commerciales pour 50mK < T < 100mK

ADR: T≈ 50-100mK Consommation: 6kW 35 kg; H:1.2m x Ø 24 cm; Automatisé et stabilisé "Se refroidit pendant la nuit, prêt le matin !" Prix ADR seul≈250 k€

T≈50 mK-100mK pendant 2 jours ADR à 2 étages Cryocooler: tube pulsé 4K www.janis.com

Sélection des matériaux du bolomètre

par leurs propriétés à très basse température

"Du détecteur à la mesure"

Roscoff / 13-21 juin 2007

Chaleurs spécifiques C(T) aux basses températures

□ Diélectriques (isolants) et semi- conducteurs intrinsèques

$$C(T) = C_{réseau \ cristallin} = aT^3$$

Métaux

$$C(T) = C_{r\acute{e}seau\ cristallin} + C_{\acute{e}lectrons} = aT^3 + \gamma T$$

Supraconducteurs

 $T > T_c$ $T < T_c \quad C(T) = aT^3 + 8.5 \gamma T_c \exp\left(-1.44 \frac{T_c}{T}\right)$

Colles, plastiques, verres, alliages...

$$C(T) = c_1 T + c_3 T^3$$

Pierre de Marcillac IAS, Orsay

C(T) des isolants

- seules excitations thermiques accessibles à TBT: ondes élastiques collectives du réseau cristallin, décomposables selon ses modes propres de vibration. Propagation à la vitesse du son (V_{son}≈10km/sec = 1cm/µs dans saphir)
- l'énergie de chaque mode est quantifiée: E=(n+1) ħω
- phonon = onde élastique de quantum élémentaire énergétique $\hbar\omega$
- énergie des phonons dominants: 2.82 k_BT, soit \approx 5 μ eV

(20mK)

C(T) des isolants

C(T) des isolants 3. le calcul de Debye marche !

C(T) des métaux: terme électronique

Pierre de Marcillac IAS, Orsay

Le succès des bolomètres, une histoire de quanta

		Dépense énergétique	
Détecteur	Produits de l'interaction	par	
		quantum d'information (QE).	
Scintillateur	Photons visibles	100 eV→1 keV	
Compteur proportionnel	Ions	10 eV→30 eV	
Semi-conducteur	Paires électrons-trous	3 eV-4 eV	
	Quasi-particules		
STJ : Jonction tunnel supra	(« paires de Cooper »	$10^{-3} {\rm eV}$	
	brisées)		
Bolomètre à cible isolante	Phonons	10 ⁻⁵ eV à 10 ⁻⁴ eV	
Bolomètre à cible métallique	Excitation d'électrons de	<< 10 ⁻⁵ eV	
Dorometre a crore metamque	conduction		

Rappel: contribution statistique au pouvoir ultime de résolution :

 $E_{\Delta E} \approx \sqrt{n} \quad avec \quad n = E_{QE}$

Elvire Leblanc (2003)

Chaleur spécifique des matériaux de 20mK à 1K

Pierre de Marcillac IAS, Orsay

Une comparaison instructive: cibles saphir & cuivre

	Capacité calorifique J. K ⁻¹	Résolution ultime thermodynamique	Énergie interne U $\int_{0}^{T} CdT$	$\frac{\Delta T}{T}$	& signal !	
	1.2 kg saphir (monocristal Al_2O_3); $A \approx 10^{-4}$ J. K ⁻⁴					
Т	$C(T) = AT^3$	$\Delta U_{rms}^{th} = \sqrt{kT^2C}$	$U = AT^4/4$	$\frac{\Delta T}{T} = \frac{\Delta E}{4U}$ pour $\Delta E = 10 \text{ keV}$		
10 mK	10 ⁻¹⁰	2.4 eV	1.5 MeV	0.3 %		
100 mK	10-7	740 eV	15 GeV	3 10-7]	
300 mK	3 10 ⁻⁶	12 keV	1.2 TeV	$2.1 \ 10^{-9}$		
1 K	10 ⁻⁴	240 keV	15 TeV	3 10 ⁻¹¹		
	1mg Cu (pastille Ø=2.2 mm ; e=30μm); γ≈10 ⁻⁸ J. K ⁻²					
Т	$C(T) = \gamma T$	$\Delta U_{rms}^{th} = \sqrt{kT^2C}$	$U = \gamma \frac{T^2}{2}$	$\frac{\Delta T}{T} = \frac{\Delta E}{2U}$ pour $\Delta E = 5 \text{ MeV}$		
10 mK	10 ⁻¹⁰	2.3 eV	3.13 MeV	80 %		
100 mK	10 ⁻⁹	73.4 eV	313 MeV	0.8 %]	
300 mK	3. 10 ⁻⁹	382 eV	2.8 GeV	9 10 ⁻⁴		
1 K	10 ⁻⁸	2.32 keV	31.3 GeV	8 10 ⁻⁵		

Linéarité (par l'exemple)

Bolomètre 2g LiF/Ge-NTD à 30mK sous irradiation ⁶⁰Co et source triple α (mesures IAS)

en augmentant la tension de polarisation (donc le courant, donc sa température) le bolomètre récupère en linéarité. Dans les configurations « non-linéaires », on observe une forte distortion des constantes de temps (l'aire est alors le bon estimateur de l'énergie: c'est une propriété de l'équation du bilan énergétique)

Pierre de Marcillac IAS, Orsay

Conductance thermique G: plus précisément...

La relation $P = G \times (T_b - T_{bain})$

définit G (en W. K⁻¹) comme une fonction de T_b et T_{bain} : en toute rigueur G (T_b , T_{bain})

- segment $\delta\ell$ de fuite (section A constante, longueur totale L)
- $\kappa(T)$ conductivité thermique (en W. K⁻¹. m⁻¹)

• cas (très fréquent): $k(T)=k_0T^{\beta}$

$$P = G \times (T_b - T_{bain}) = g_0 (T_b^{\beta+1} - T_{bain}^{\beta+1}) \quad avec \quad g_0 = \frac{A\kappa_0}{L} \times \frac{1}{\beta+1}$$

 $\delta T = \frac{P}{A\kappa(T)} \delta l$

Conductivité thermique des matériaux de 30mK à 1K

Pierre de Marcillac IAS, Orsay

"Du détecteur à la mesure"

Roscoff / 13-21 juin 2007

Autres grandeurs thermodynamiques importantes...

- Diffusivité thermique \mathcal{D} (en m².s⁻¹)
 - Intervient dans l'équation de diffusion de la chaleur
 - Faible dépendance en T
 - Temps de thermalisation d'un échantillon homogène de taille L
- Résistance de Kapitza R_K (en K.W⁻¹)
 - Gradient de T aux interfaces (surface Σ)
 - liquide-solide
 - solide-solide
 - Description complexe
 - Théorie (dés)adaptation acoustique,...
- Coefficients de dilatations thermiques $\Delta L/L$
 - Quelques % ; peut dépendre de l'orientation cristalline
 - Contraintes différentielles \rightarrow casse !
 - Éviter absolument les chocs thermiques $\rightarrow \pm 1$ K / mn préconisé

 $\frac{\mathcal{K}}{C_{v}}$

Historique

- Principes fondamentaux de la détection
 - pourquoi refroidir ?
- Techniques cryogéniques courantes en bolométrie
- Sélection des matériaux du bolomètre
 - par leurs propriétés à très basse température
- □ Suivi thermométrique du bolomètre
 - Techniques, principes de lecture
- Bolomètre polarisé
 - Bruits
 - Caractéristiques
- Environnement du bolomètre en laboratoire

Couplage bolomètre optique

1. concentrateur

• optique « non-imageante »

• concentrateurs paraboliques (Winston), cônique-paraboliques, « flared »...

• maximise l'étendue de faisceau S Ω / taille du bolomètre (tenir C \downarrow)

Réalisations bolomètres IAS/collecteurs IR-Lab (calibration Planck-HFI)

Mesures à Cardiff à 100GHz (λ =3mm)

Couplage bolomètre optique

- couche résistive en Bismuth (semi-métal \rightarrow C réduite pour une même résistivité)
- adaptation de l'épaisseur de la couche résistive à l'impédance du vide (377Ω), en fonction de l'indice n du substrat
- Pb: trouver le meilleur <u>compromis entre absorption et chaleur spécifique...</u>

Suivi thermométrique du bolomètre

Techniques, principes de lecture

"Du détecteur à la mesure"

Roscoff / 13-21 juin 2007

Thermométries utilisées en bolométrie

Thermométrie

- Résistive (thermistors)
 - Haute impédance ($100k\Omega \rightarrow 10M\Omega$)
 - Ge-NTD (Neutron Transmuted Dopped)
 - Si implanté
 - Nb_xSi_{1-x}
 - Basse impédance $(10m\Omega \rightarrow 100m\Omega)$
 - TES (Transition Edge Sensor)
- Magnétique
 - Ions magnétiques dans matrice métallique (système Au:Er)

La technologie associée au thermomètre est souvent le point le plus difficile à maîtriser au cours de la conception d'une chaîne de détection bolométrique.

Par rapport à la description du bolomètre idéal (et non lu !), limité au bruit thermodynamique chaque thermomètre va:

- ajouter sa propre capacité calorifique
- ajouter son propre bruit et celui de son électronique de lecture
- changer la constante de temps du détecteur (en plus rapide)

 $\Delta E_{rms} > \sqrt{k_B T^2 C_{cible \ seule}}$

en général...

Ge-NTD

- ✓ irradiation dans réacteur ($n_{thermiques}$) de navettes de Germanium (longueur≈7cm)
- ✓ excellente reproductibilité après étalonnages; résistivité $\rho \infty$ dose reçue
- ✓ doses \approx 1-5 10¹⁸ n/cm² → dopage final légèrement inférieur au dopage critique
 - « transition » Métal-Isolant $\rightarrow \rho_{critique}(300K) \approx 45 m\Omega.cm$
- ✓ dopage homogène (>> dopage chimique)
- ✓ en pratique on observe un gradient de résistivité (≈ 15%) reflétant le gradient de flux du réacteur
- ✓ compensation Ge-NTD: $K=N_D/N_A \approx 30\%-40\%$
- ✓ technologie développée aux US (« Haller & Beeman », principal fournisseur) et en France (IAS)

Abondance naturelle de l'isotope Ge	Réaction	$ au_{1/2}$	Type impureté dopante
20.5 %	$^{70}\text{Ge}(n,\gamma)^{71}\text{Ge} \rightarrow ^{71}\text{Ga} + \text{EC}$	11 j	Р
36.5 %	$^{74}\text{Ge}(n,\gamma)^{75}\text{Ge} \rightarrow ^{75}\text{As} + e^{-1}$	82 mn	Ν
	$^{76}\text{Ge}(n,\gamma)^{77}\text{Ge} \rightarrow ^{77}\text{As} + e^{-1}$	11h	
7.8 %	\downarrow		Ν
	⁷⁷ Se+e ⁻	39h	

Ge-NTD

2. sélection

Ge-NTD

3. R(T) typique

Pierre de Marcillac IAS, Orsay

"Du détecteur à la mesure"

Roscoff / 13-21 juin 2007

52

Ge-NTD 4. des « senseurs » radioactifs !

✓ risque d'**activation** d'éventuelles impuretés lors de l'irradiation !

✓ séparation possible par constantes de temps (les événements « senseur » sont toujours plus rapides)
 → problème potentiel de confusion avec des « bons événements » à basse énergie, alors que cette région intéresse particulièrement les expériences de détection de la matière noire !
 ✓ solution: utiliser le matériau le plus pur (et le plus cher): HPGe ?

- fabrication de films minces (650Å) par masques et co-évaporation d'un composé métal & semiconducteur (Nb & Si; X≈8%) sous ultravide
- développement CSNSM (équipe de Louis Dumoulin)
 - → localisation des événements de surface pour l'expérience Edelweiss (EDW-II)
 - \rightarrow senseurs **pixellisables** pour matrices de bolomètres
- description (comme Ge-NTD) dans le cadre de la TMI « transition » métal-isolant d'Anderson
- vu « du monde extérieur », comportement analogue aux Ge-NTD
 - \rightarrow même chaîne de lecture
- moins « polarisables » que les Ge-NTD

Thermomètre A

Ge 200g équipé NbSi

Test 2004 au LSM (EDW-I)

Pierre de Mar

d'après Alexandre Juillard (journées CAPPS; Orsay 2004)

Pierre de Marcillac IAS, Orsay

Si implanté

- ✓ Si-NTD possibles , mais de fortes doses de neutrons sont nécessaires (coût[↑]; radioactivité induite[↑])
- \checkmark dopage par implantation ionique
- \checkmark solutions pour uniformisation du profil de densité (valables pour des épaisseurs de quelques μ m):
 - implantations à différentes énergies (keV→MeV) et ≠ doses pour viser un profil ± plat
 - diffusion à haute température des éléments implantés

✓ Intérêt : les techniques industrielles de masquage et de photolithographie sont applicables

→ Solutions de thermométrie intégrables sur support Si (seules les zones intéressantes sont dopées)

Lecture Ge-NTD

Circuit de polarisation (non différentiel, ici)

►Partie froide (T≤100mK)

 \odot simple !

© particulièrement adaptée à la détection de particules (BP des amplis quelques 100kHz)

 \bigcirc alim. du pré-ampli (JFET) et des amplis sur batterie \rightarrow pas de secteur introduit par la lecture

 \textcircledightarrow la résistance de charge (R_L) doit être refroidie pour ne pas voir son bruit... \rightarrow aux forts courants, le réfrigérateur peut se réchauffer.

⊗ bruit en 1/f des JFETs

 \rightarrow 1er étage froid: le JFET est souvent refroidi à 120K (in \downarrow)

Capacité parasite: $C \le 100 \, pF$ pour les câblages soignés

Lecture Ge-NTD 2. polarisation « triangle & carré »

<u>FUNCTIONING SCHEME OF A MEASUREMENT CHANNEL</u> (DIFFERENTIAL SYSTEM)

 \bigcirc différenciation du triangle \rightarrow polarisation carrée au niveau du bolomètre. <u>Le point de fonctionnement du</u> <u>bolomètre (sa température) est constant</u> (\neq modulation sinusoïdale);

☺ Détection synchrone → niveau de bruit BF = niveau de bruit ampli à la fréquence de modulation (ici 80Hz) → <u>très bas niveaux de bruit BF</u> (adopté pour Planck-HFI, Edelweiss-II,...)

🐵 ne sera probablement adapté pour la détection de particules que si le bolomètre est lent !

TES (Transition Edge Sensors) 1. principes

→ extrait en grande partie du cours de Martin Loïdl (Balaruc les Bains; 1999); aussi Ch. Enss (2004)

- autre appellation: SPT(Superconducting Phase-Transition thermometer)
- film fin supraconducteur polarisé sur le front de la transition normal->supra

Films bi-couches Supraconducteur /Métal [effet de proximité \rightarrow T_c(bicouche)<T_c(supra)]

- Al/Ag Tc: $50mK \rightarrow 1K$; prédictible à 2mK près; $\Delta Tc < 0.1mK$
- Mo/Au $T_c: 100mK \rightarrow 915mK; \Delta Tc < 1mK$
- **Mo/Cu** Tc: 40mK→100mK
- Ir/Au Tc: $25mK \rightarrow 100mK$; prédictible au mK près; très stable; $\Delta Tc < 1mK$

"Du détecteur à la mesure"

normal

TES (Transition Edge Sensors) 2. lecture

SQUID: Superconducting Quantum Interference Device (demi-anneaux supraconducteurs séparés par des jonctions Josephson)

Avantages comparés Ge-NTD & TES

	Ge-NTD	TES
Sensibilité	-	+
Dynamique	+	-
Radioactivité	-	+
Simplicité du montage	+	-
Assemblage en matrice	-	+
Choix de cibles	+	
Thermalisation	-	+
Rapidité		+
Stress thermique	-	+
Robustesse	+	-
Phonons athermiques		+
Lecture	JFET	SQUID

Thermomètres magnétiques

✓ cf A. Fleischmann et al., in Ch. Enss (2004).

 ✓ Ions paramagnétiques 4f dans matrice métallique [les matrices isolantes sont pénalisées par des constantes de temps de couplage spin-phonons trop longues; ≈ sec]

 \rightarrow capacité calorifique additive importante

Moment magnétique d'un thermomètre Au:¹⁶⁶Er (300 ppm) en fonction de T (mesures et fit des modèles)

□Bolomètre polarisé

Bruits

"Du détecteur à la mesure"

Roscoff / 13-21 juin 2007

Bolomètre polarisé à I constant (cas des Ge-NTD)

Après soustraction de la solution stationnaire, le bilan énergétique s'écrit

$$C\frac{d\Delta T}{dt} + G\Delta T = \Delta R \times I^2 + E\partial(t) + QH(t)$$

On tient compte de P_{Joule} à présent

En introduisant la réponse logarithmique du thermomètre

$$\alpha = -\frac{\partial \ln R}{\partial \ln T} \approx -\frac{\Delta R}{R} \times \frac{T}{\Delta T}$$

Le bilan énergétique se réécrit

• Pour un thermistor suivant le régime « Variable Range Hoping »:

$$\alpha = 0.5 \sqrt{\frac{T_0}{T}}$$
 et $\alpha \approx 3 \rightarrow 30$ [Ge-NTD types]

• Note: pour un TES, $\alpha \approx -100 \rightarrow -1000$!

$$C\frac{d\Delta T}{dt} + (G + \frac{\alpha P}{T})\Delta T = E\partial(t) + QH(t)$$

La constante de temps effective du bolomètre polarisé apparaît:

Il y a contre-réaction « électrothermique »: l'effet de la polarisation est d'accélérer le détecteur

$$\tau_{eff} = \frac{C}{G + \alpha \frac{P}{T}} \leq \frac{C}{G} = \tau_{th}$$

Une autre limitation intrinsèque: le bruit Johnson

✓ source: mouvement brownien des électrons dans la résistance

 $\checkmark \rightarrow$ générateur équivalent de bruit en tension avec la densité spectrale

$$S_v = \sqrt{4k_B T R} \quad (nV / \sqrt{Hz})$$

AN: 5 M Ω à 20mK \rightarrow 2.3 nV/ \sqrt{Hz}

✓ bruit blanc

$$\checkmark V_{rms} = S_v \times \sqrt{\Delta f}$$

 $\checkmark \rightarrow$ refroidissement nécessaire des résistances de polarisation (élevées, par fonction) [Note: le bruit Johnson peut servir de référence absolue pour la thermométrie à BT]

Recherche du point de polarisation optimum 1.

On a donc deux bruits irréductibles pour un bolomètre résistif:

- le bruit thermodynamique (en keV)

- le bruit Johnson (en V) , qui se traduit en keV par l'intermédiaire de la réponse du bolomètre (${\cal R}$ en V/keV)

On peut montrer que ces deux contributions peuvent se simplifier pour l'expression réduite:

Recherche du point de polarisation optimum 2.

- D'après la figure précédente $\xi=f(t-1)$, où t est la température réduite (t=T/Tbain), on peut dans certaines conditions être proche du bruit thermodynamique initial, pourvu que
- 1. La sensibilité α du thermomètre soit suffisante (≥ 20)
- 2. Le bolomètre soit polarisé convenablement
 - en pratique, le minimum est proche de t-1=0.1à 0.2, quelles que soient les courbes décrivant la composition du bolomètre (i.e. C, G) et la sensibilité du thermomètre.

Pour être à leur maximum de sensibilité les bolomètres doivent généralement être polarisés **entre 10% et 20% au dessus du bain**

par ex. $T_{bain}=20mK \rightarrow T_{bolo}=22mK$ à 24mK

3. Avec un bolomètre à Ge-NTD de sensibilité moyenne (α=5 à 10), on est à un facteur 3 seulement du bruit thermodynamique → c'est souvent plus que suffisant pour l'application visée..... à condition

 (a) que les amplis soient bons
 (b) qu'il n'y ait pas de partition de l'énergie !

Bruit des amplis: valeurs caractéristiques

1	e _{bruit}					
R _{bolo}		Densités s br	pectrales de ruit	T _{bruit}	R _{bruit}	Domorquos
		e _{bruit} V/√Hz	i _{bruit} A∕√Hz	К	Ω	Kemarques
I	Transistor bipolaire	0.3 nV	1 pA	2 K	100 Ω	
	JFET Silicium à	1 nV	1 fA	20 mK	1 M Ω	Bruit 1/f à
	300K					f<10Hz
	JFET Silicium à	1 nV	0.1 fA	2 mK	10 MΩ	
	120K					
	MosFET à T≤4.2K	1 µV	$< 10^{-16} \text{ A}$	200 mK	>100 GΩ	$R_{bruit} \approx \infty$
	FET AsGa à	1 nV	1 fA	20 mK	1 MΩ	Bruit 1/f à
	T≤4.2K					f<10kHz
	SQUID (T≤4.2K)		1 pA	$1.5 \ 10^{-9} \times f$	$6 \ 10^{-6} \Omega \times f$	
	SET (T≤100mK)*	100 nV		$1.5 \ 10^{-7} \times f$	$1.6 \ 10^{15} \Omega /f$	

d'après Alain Benoît (Ecole d'automne de Balaruc les Bains; nov. 1999)

Définitions:

• $R_{bruit} = e_{bruit} / i_{bruit}$

• $4 \times k_B T_{bruit} = e_{bruit} \times i_{bruit}$ \approx énergie mini mesurable

* SET=Single Electron Transistor

Pierre de Marcillac IAS, Orsay

Adaptation d'impédance:

✓ R_{bolo}=R_{bruit}: on ne voit pas l'ampli si T_{bruit}<T_{bolo}
 ✓ R_{bolo}≠ R_{bruit}: on ne voit pas l'ampli, à condition que

 $R_{bruit} \times (T_{bruit}/T_{bolo}) < R_{bolo} < R_{bruit} \times (T_{bolo}/T_{bruit})$

Partition de l'énergie

in H.H. Andersen (1986), cité par D. L'Hôte

Pierre de Marcillac IAS, Orsay

1

• très peu d'études systématiques à ce jour du partitionnement, ni de mesures fines

les détecteurs sont calibrés avec le type de particules étudiées

[ex: l'équipe STAP/IAS a observé une réponse thermique supérieure α / γ dans CaWO₄ et BGO (de l'ordre de 7%)]

 même s'il n'y a pas de recombinaison des paires électrons-trous, on attend une meilleure résolution dans les bolomètres à cibles semi-conductrices /détecteurs Si & Ge conventionnels (avec une répartition de l'énergie pour ≈2/3 en chaleur, 1/3 en création de paires, la résolution limite calculable est au moins 0.55 meilleure)

 ■ les cibles métalliques ou semi-métalliques (ex. Bi) ont à priori moins de branchements→ à privilégier pour la haute résolution

nouveau champ d'études, abordable probablement par calorimétrie absolue (effet Joule)

 \rightarrow intérêt pour les physiciens des solides (combien d'énergie stockée dans les défauts sous implantation ?)

□Bolomètre polarisé

Caractéristiques

"Du détecteur à la mesure"

Roscoff / 13-21 juin 2007

Caractéristiques VI

1. mesures

Pierre de Marcillac IAS, Orsay

Caractéristiques VI

2. R(T)

Pierre de Marcillac IAS, Orsay
Caractéristiques VI

3. G(T)

Caractéristiques VI 4. Simulations (R & G connus)

Pierre de Marcillac IAS, Orsay

Caractéristiques VI

5. Réponse (DC)

Pierre de Marcillac IAS, Orsay

Environnement du bolomètre en laboratoire

"Du détecteur à la mesure"

Roscoff / 13-21 juin 2007

Calibrations

1. détection de particules

 les sources sont de faible activité (« lenteur » des bolomètres)

 en raison des nombreux écrans cryogéniques et de l'inaccessibilité du détecteur, les sources alphas, bêta et X (qq. μCi) doivent être refroidies, tandis que les sources plus pénétrantes (gammas, neutrons) sont externes.

 des montages avec ou sans fenêtre ont aussi été réalisés pour une détection sous faisceau

Calibrations

2. détecteurs Sub-mm

Source froide « CS2 » de l'installation de calibration Planck-HFI à l'IAS

CS2 vue par deux bolomètres IAS de calibration...

Autres moyens de calibration et d'excitation:

 particules, pulse NIR (LED), effet Joule R&D équipe STAP/IAS

 fibre C: constantes de temps, diaphonie R&D LAL

Environnement du bolomètre (ex. de l'IAS)

Pierre de Marcillac IAS, Orsay

"Du détecteur à la mesure"

Roscoff / 13-21 juin 2007

NEP 1. Bruit de photons (bolomètres sub-mm)

✓ nature statistique (lié aux fluctuations du nombre de photons incidents par unité de temps)

✓ se mesure en NEP (Noise Equivalent Power; unités: W/\sqrt{Hz})

✓ pour les détecteurs de rayonnement les plus sensibles, le **bruit de photons** (de la source mesurée ellemême, des surfaces émissives des télescopes), par nature irréductible, est le bruit à battre:

 le bolomètre est construit idéalement pour être limité par ce bruit (conditions « BLIP »: Background Limited Infrared Photodetector): les contributions ajoutées en quadrature des bruits thermodynamique, Johnson, des amplis devront être inférieures.

S'il y a de la marge (bruit de photon élevé), on peut surdimensionner le détecteur pour gagner en efficacité de détection.

$$NEP_{photons} = \left[2Q(hv + \alpha efk_BT_S)\right]^{\frac{1}{2}}$$

Cf. Mather (1984)

 Q: rayonnement de fond absorbé par le bolomètre

- hv: énergie moyenne des photons
- α: efficacité d'absorption du détecteur
- f : facteur de transmission optique depuis la source

• e, T_s: émissivité et température de la surface responsable du rayonnement de fond

NEP

2. NEP faible \rightarrow modulation BF

Pierre de Marcillac IAS, Orsay

NEP

3. NEP faible \rightarrow T basse

Pierre de Marcillac IAS, Orsay

Formules de passage NEP, bruit, résolution

✓ les formules suivantes permettent de passer d'un bruit en tension Sv (V/√Hz) mesuré aux bornes d'un bolomètre au NEP équivalent (W/ √Hz) de ce bolomètre, et de calculer la réponse anticipée à une fréquence donnée (bolomètres submm) ou après absorption d'une énergie donnée à partir de la mesure DC de la réponse et d'une mesure de la constante de temps effective du bolomètre polarisé τ_{eff} ...

$$NEP(f)_{W/\sqrt{Hz}} = \frac{S_{v}(f)_{V/\sqrt{Hz}}}{Réponse(f)_{V/W}} \qquad \text{(rolloff)} \\ Réponse(f)_{V/W} = Réponse(DC)_{V/W} \times \frac{1}{1+j2\pi f\tau_{eff}} \\ Réponse_{V/keV} = \frac{Réponse(DC)_{V/W}}{\tau_{eff}} \\ \Delta Erms_{keV} = \frac{S_{v}(f)_{V/\sqrt{Hz}} \times \sqrt{\Delta f}}{Réponse_{V/keV}} = \frac{S_{v}(f)_{V/\sqrt{Hz}} \times \sqrt{\tau_{eff}/4}}{Réponse(DC)_{V/W}}$$

 τ_{eff} est mesuré sur le signal, mais se calcule aussi lors de la construction!

 $BP=1/(4 \times \tau_{eff})$ est la bande passante équivalente du bolomètre

La réponse DC se mesure facilement lors de l'établissement des **caractéristiques VI** du bolomètre (c'est la mesure de $\Delta V/\Delta P$ lors du déplacement du point de polarisation)

Remerciements

Ce cours a grandement bénéficié des contributions de

- Noël Coron (IAS)
- Elvire Leblanc (CEA/LNE-LNHB)
- Bernadette Leriche (IAS)
- François Pajot (IAS)
- Maurice Chapellier (CEA)
- Martin Loïdl (CEA/LNE-LNHB)
- Denis L'Hôte (CEA)

Merci à eux !

PM

- Cryogenic Particle Detection
 Ch. Enss (Ed.), Topics in Applied Physics, Springer (2005)
- Matter & Methods at Low Temperature
 F. Pobell, Springer Verlag (1992)
- Experimental Principles and Methods Below 1K
 O. V. Lounasmaa, Academic, London (1974)
- Detection of Light: from the UV to the Submm G.H. Rieke, Cambridge (2004)
- Astrophysique: Méthodes physiques de l'observation
 P. Léna, InterÉditions / CNRS Éditions (1996)

Annexe-I

Écoles d'automne thématiques: « Détection de rayonnements à très basse température » organisées par Maurice Chapellier, avec l'aide d' Alain Benoit, Louis Dumoulin et Jean-Pierre Torre

dans le cadre des programmes de formation permanente du CNRS et du CEA

Liste des cours

« Détection de rayonnements à très basse température »

1991 : Aussois		
Les basses températures		
et leur application à la détection bolométrique		
Basses Températures: Généralités		
Conduction thermique	B. Salce	
Résistance de Kapitza	H. Godfrin	
Chaleurs spécifiques	P. Garoche	
Production des basses températures		
Principes	M. Chapellier	
Dilution géométries possibles	A. Benoit	
Cryogénie spatiale	J.P. Torre	
Liquides Quantiques : dilution He3 :He4	L. Puech	
Mesure des basses températures		
Thermomètres absolus		
Thermomètres secondaires	J.P. Brison	
Points fixes		
Compléments Matériaux		
Transition Métal Isolant	L. Dumoulin	
Supraconducteur basse température	B. Pannetier	
Défauts d'irradiation dans les Solides	D. Lesueur	
Problèmes techniques associés aux mesures à basse température		
Détecteurs semi conducteurs	B. Equer	
Mesures bas bruit	J.L. Bret/Ayela	
Basses radioactivité	P. Hubert	
SQUID et électromètre	C. Urbina	
Applications de la détection bolométrique		
Bolomètres : Résultats et espoirs	N. Coron	
Rayons X, IR et micro-onde en Astrophysique	J.M. Lamarre	
Neutrinos, matière noire, ions lourds	L. Gonzales Mestres	

« Détection de rayonnements à très basse température »

1992 : La Londe Les Maures		
Physique et techniques des détecteurs		
Les détecteurs refroidis pour quoi faire ?		
Recherche des évènements rares Astrophysique, rayons X et infrarouge	A. de Bellefon	
Spectrométrie en physique nucléaire	A. Broniatowski	
Les détecteurs refroidis		
Physique des bolomètres	Y. Giraud- Héraud	
Les bolomètres pour la photométrie	J.P. Torre	
Les bolomètres pour la détection de particules	P. de Marcillac	
Détecteurs supraconducteurs	G. Waysand	
Détecteurs a jonction supra	J.P. Maneval	
Autres type de bolomètres	A. Benoit	
Luminescence à basse température	B. Jacquier	
Photoconducteurs, BIB photovoltaïque	J. Léotin	
Ionisation à très basse température	M. Chapellier	
Détection hétérodyne	G. Beaudin	
Problèmes liés au signal		
Photométrie Bruit extérieur de mesure	J.M. Lamarre	
Ligne, amplification et traitement du signal	G. Jegoudez	
Mesure en impulsion		
Ligne et amplification	R. Bruère Dawson	
Traitement du signal	M. Bosshard	
Cryogénie		
Machine cryogénique	A. Ravex	
Cryogénie à très basse température	P. Pari	
Bruit et environnement	H. Godfrin	

« Détection de rayonnements à très basse température »

1996 : Aussois		
Supraconducteurs, phonons hors-équilibre et acquisitions		
Mesure et traitement du signal		
Bruits fondamentaux	H. Bouchiat	
Principales sources de bruits non fondamentaux	A. Richard	
Traitement du signal (méthodes analogiques	A. Benoit	
Traitement du signal (méthodes numériques)	G. Chardin	
Phonons		
Introduction aux phonons, interaction électron-phonon	J. Joffrin	
Résistance de Kapitza	M. Chapellier	
Processus de relaxation de l'énergie déposée dans un solide	A. Broniatowski	
Supraconductivité		
Introduction à la supraconductivité, excitation dans les supraconducteurs	L. Dumoulin	
Jonction tunnel, effet Josephson, détecteur à jonction	J.P. Maneval	
Détection de particule : état métastable et « transition edge »	V. Jeudy	
Electronique supraconductrice, amplificateur à SQUID	J.C. Villégier	
Champs d'application des bolomètres		
Bolomètres ionisation / chaleur,	D. L'Hôte	
Projets spatiaux futurs	J.M. Lamarre	
PRONAOS	J.P. Torre	
La problématique du neutrino	M. Cribier	
Bolométrie pour la détection d'ions	A. Broniatowski	
Culture scientifique générale		
Comptage de photons	Ph. Feautrier	
Interaction particule matière	D. Lesueur	
Atelier		
Limite ultime des bolomètres	A. Benoit	
Discussions de montages concrets	D. Yvon	
Thèses en cours	animé par X.F. Navick	

« Détection de rayonnements à très basse température »

1999 : Balaruc les Bains		
Physique et techniques ultimes pour les détecteurs		
Cryogénie		
Introduction générale	M. Chapellier	
Tube pulsé	Ravex	
Dilution	P. Pari	
Désaimantation adiabatique	Bossy	
Physique des basses températures		
Chaleurs spécifiques/anormales	P. Garoche / M. Chapellier	
Conductibilités thermiques/Interfaces	P. Garoche / M. Chapellier	
Isolant d'Anderson	L. Dumoulin	
Supraconducteurs	M. Aprilli	
Physique mise en jeu dans les bolomètres		
Principe de base du bolomètre	P. Camus	
Conversion d'énergie et ionisation	A. Broniatowski	
Interaction électron – phonons	N. Perrin	
Transition Edge Sensor	M. Loidl	
Exemple de détecteurs cryogéniques		
Submillimétriques / spiderweb	J.P.Torre	
Superconducting Tunnel Junction as photon detectors	R. den Hartog	
Bolomètres massifs ionisation chaleur	X.F. Navick	
Lecture et traitement de donnée		
Ampli à Squid	D. Mailly	
Statistique élémentaire	J. Bouchez	
Traitement du signal et analyse de données	G. Chardin	
Electronique de mesure pour bolomètres	A. Benoit	

« Détection de rayonnements à très basse température »

2002 : Oléron		
Physique et techniques		
Outils		
Cryostats Hélium 3 pompé	J.P. Torre	
Cryostats à dilution: une approche expérimentale des différents types d'appareils, leur utilisation, leur maintenance	P. Pari / M. Chapellier / A. Benoit	
Appareils à désaimantation : principe et domaine d'application en bolométrie	J. Hôhne	
Refroidissement par évaporation tunnel d'électrons Pulse tube	J. Pekola	
Thermométrie à très basse température :		
la thermométrie résistive et ses difficultés		
Régulation de température	M. Piat	
Electronique a basse température	Y. Jin	
Bolomètres		
Focalisation, filtrage, absorption	B. Maffei	
principe du bolomètre avec senseur résistif matrices de bolomètres Multiplexage	P. Camus	
Isolant d'Anderson	S. Marnieros	
Supraconducteurs	M. Loidl	
Mécanisme de la formation d'un signal		
Phonons de haute énergie Phonons balistiques et thermalisation finale	A. Juillard	
Acquisition et traitement de données		
Réduction du bruit du a l'environnement	D. Yvon / M. Chapellier	
Du préamplificateur froid au disque dur Bruit fondamentaux et acquisition tout numérique	A. Benoit	
Filtrage numérique. Filtre optimum	G. Chardin	
Culture scientifique		
Métrologie	E. Leblanc	
Le Fond Cosmologique Micro-onde: Connaissances actuelles et futures expériences	J. Delabrouille	
Autres applications astrophysiques des détecteurs cryogéniques (RX)	C. Pigot	

Annexe-II

Les bolomètres pour la détection de particules Cours de Denis L'Hôte

École Internationale Joliot-Curie de Physique Nucléaire Maubuisson, 1994

Copie (accessible sur le site de l'école Joliot-Curie)

