Ecole IN2P3 Du détecteur à la mesure

Institut National de Physique Nucléaire et de Physique des Particules

Détecteurs bolométriques refroidis:

2. Applications

Pierre de Marcillac

Institut d'Astrophysique Spatiale d'Orsay

Applications des bolomètres:

- En spectroscopie

 - Ο γ
 - $\Box \alpha$
 - Ions lourds
- □ En physique fondamentale
 - Rayonnement fossile cosmologique (CMB): Archéops ; Planck-HFI
 - Masse du neutrino
 - Recherche d'événements rares
 - Double bêta sans neutrino
 - Détection de la Matière noire
 - □ Avec discrimination « Charge & chaleur »: CDMS (US) ; EDELWEISS (Fr)
 - □ Avec discrimination « Lumière et chaleur »: CRESST (All.); ROSEBUD (Fr, Es)

Désintégrations rarissimes

Tendances: polarisation du CMB, matrices

□spectroscopie X

Spectroscopie X très haute résolution...monopixels

Spectroscopie X: matrice 6 x 6 de l'instrument XRS

- Iancé le 10 juillet 2005
- objectifs: amas de galaxies, trous noirs, SuperNovae
- premier satellite à T<100mK dans l'espace (ADR+cryocooler+Néon solide) !

Note: pb. cryogénique 3 semaines après le lancement \rightarrow XRS s'est réchauffé !

- matrice 6×6 à bord de Suzaku (ex Astro-E2)
- télescope: miroir en incidence rasante
- thermométrie Si implanté; T=60mK
- résolution moyenne: △E=5.5 eV FWHM @ 5.9 keV

Analyse par fluorescence X: offre commerciale

- POLARIS® (VeriCold techologies)
- Spectroscopie X (< 5 keV)
- Adaptation directe sur MEB (Microscope Electronique à Balayage)
- Résolution 15eV @ 1.5 keV
- ADR 100mK sans fluide cryogénique
- Microcalorimètre X à TES


```
Coût ≈ 500 k€
```


Collaboration IAS & CEA/ LNE-LNHB (Lab. Nat. Henri Becquerel)

"Du détecteur à la mesure"

spectroscopie α

1. bolomètre à cible Cu

Bol#300 : cible Cu

✓ Dynamique élevée
 500 eV-10MeV
 ✓ T_{bolo}≈50mK ; Rbolo≈50kΩ
 ✓ cible démontable

- 1. Cu (Ø 2,6 mm ; épaisseur 22 microns)
- 2. Ge
- 3. Cire
- 4. Ge-NTD (8x5x0,9mm³)
- 5. Ge (fuite thermique)
- 6. Résistance chauffante
- 7. Support Ge

spectroscopie α 3. source ²³⁸Pu électrodéposée

Meilleur spectre alpha jamais obtenu avec une source externe et un détecteur solide ! (→ Elvire Leblanc et al.; CR de ICRM 2005, 5-9 sept. 2005)

□ Rayonnement fossile cosmologique (CMB)

CMB: le corps noir était presque parfait

Figure 1 : Graphe de la fonction de Planck (corps noir) – Angle solide = 1^{St}

d'après Bruno Mafféï et Jacques Delabrouille (Ecoles d'automne)

Pierre de Marcillac

CMB: l'appel de l'espace

Cartes des anisotropies du CMB

Pierre de Marcillac

"Du détecteur à la mesure"

Caractéristiques de Planck

✓ Performances des détecteurs de Planck-HFI

- -Sensibilité dominée par le bruit de photon du CMB
- $-\approx$ 1000 fois plus sensible que COBE

$-\approx$ 20 à 30 fois plus sensible que WMAP

– 52 bolomètres à 100 mK

– une technologie éprouvée par Archéops (manip ballon stratosphérique)

✓ Caractéristiques du relevé Planck

- Résolution spatiale améliorée
- Signal / Bruit par pixel \uparrow (jusqu' à x10)
- Mesures de la polarisation du CMB

Objectifs

Planck-HFI modèle de qualification « CQM »

Consortium Planck-HFI (PI: Jean-Loup Puget @ IAS; mission ESA)

Caltech, CITA (Ca), CESR, CRTBT, CdF-APC, CEA, DSRI (DK), LPAC(UK), IAOP, LAOG, IoA (UK), JPL(USA), LAL, MPI(D), MRAO(UK), NUI(IR), Cardiff Univ. (UK), RAL(UK), ESA-SSDE(NL), Univ. Genève(CH), Univ. Grenada(E), Univ. LaSapienza(It)

Caractéristiques de Planck

- HFI : High Frequency Instrument 100 GHz à 857 GHz (6 Bandes)
- LFI: Low Frequency Instrument 30 GHz à 70 GHz (3 bandes)

	m LFI			HFI					
Instrument Characteristic									
Detector Technology	HEMT arrays			Bolometer arrays					
Center Frequency [GHz]	30	44	70	100	143	217	353	545	857
Bandwidth $(\Delta \nu / \nu)$	0.2	0.2	0.2	0.33	0.33	0.33	0.33	0.33	0.33
Angular Resolution (arcmin)	33	24	14	10	7.1	5.0	5.0	5.0	5.0
$\Delta T/T$ per pixel (Stokes I) ^{<i>a</i>}	2.0	2.7	4.7	2.5	2.2	4.8	14.7	147	6700
$\Delta T/T$ per pixel (Stokes $Q \& U)^a \dots$	2.8	3.9	6.7	4.0	4.2	9.8	29.8		• • •
^a Goal (in μ K/K) for 14 months integrat	tion, 1σ ,	for squ	are pixels	whose si	ides are	e given	in the	row "A	Angular

Approche multi-bandes: réduction des avant-plans

L'instrument Planck-HFI

Couplage optique et définition angulaire

Architecture thermique

Bolomètres araignées (JPL @ Caltech)

Ge-NTD

Table 4. Average Va	Performance alues and Dispersion Vicromesh Bolomet	ES n in Parameters ers	s for Ten
Parameter	Value	Unit	% Disp
$T_{ m b}$	315	mK	
R_0	8.843	Ω	6.31%
Δ	50.388	K	0.75%
G (400 mK)	$9.1 imes10^{-10}$	W/K	3.83%
C (400 mK)	$1.8 imes10^{-11}$	J/K	11.1%
τ (400 mK)	15.5	ms	14.1%
Voltage Noise	$6 imes 10^{-9}$	V/\sqrt{Hz}	
Responsivity (0 Hz)	$7.2 imes10^7$	V/W	
NEP (0 Hz)	$8.5 imes10^{-17}$	W/\sqrt{Hz}	

Table 3. Thern	nal Conductance and W	leb Properties
H Web	300 mK	100 mK
$\begin{array}{l} G_{\rm absorber}~({\rm W/K})\\ G_{\rm supports}~({\rm W/K})\\ \tau_{\rm therm}~(\mu{\rm s})\\ G_{\rm ctr}/G_{\rm opt} \end{array}$	$\begin{array}{rrrr} 6.0 \ \times \ 10^{-11} \\ \leq 2 \ \times \ 10^{-11} \\ 250 \\ 0.95 \end{array}$	$\begin{array}{rrrr} 1.4 \ \times \ 10^{-11} \\ \leq 1.0 \ \times \ 10^{-12} \\ 500 \\ 0.99 \end{array}$

Conduction thermique de la toile

- Substrat: membrane Si₃N₄ (qq μm)
- Film résistif: Au
- Coefficient de remplissage
 ≈ 2%→10% (lutte efficacement contre les rayons cosmiques)

Bolomètres araignées: bilan détaillé de C(T)

Component	C_{v} Electron (J/cc K ²)	C_{ν} Lattice (J/cc K ⁴)	Volume (cc)	C (400 mK) (J/K)	
Thermistor					
Ge^a	1.9×10^{-7}	3.0×10^{-6}	$1.66 imes10^{-5}$	$4.52 imes 10^{-12}$	
Pd^{b}	1.2×10^{-3}	1.1×10^{-5}	$2.6 imes 10^{-9}$	1.25×10^{-12}	
Au^b	$7.3~ imes~10^{-5}$	4.2×10^{-5}	$5.2~ imes 10^{-8}$	$1.65 imes10^{-12}$	
Total				7.42×10^{-12}	
Electrical Leads				-	
Cu^b	9.7×10^{-5}	6.7×10^{-6}	$8.75 imes10^{-8}$	3.4×10^{-12}	
NbTi ^b	superconducting	4.0×10^{-6}	$1.71 imes10^{-6}$	4.5×10^{-13}	
\ln^b	$1.15 \times 10^{-4}(n)$	$9.58 imes10^{-5}$	$1.25 imes10^{-7}$	7.7×10^{-13}	
Pb^{b}	$1.71 \times 10^{-4}(n)$	1.2×10^{-4}	$2.5 imes 10^{-8}$	2.0×10^{-13}	
Total				$4.82 imes 10^{-12}$	
Absorber			۰.		
Cr^{b}	2.03×10^{-4}	$1.19 imes10^{-6}$	3.0×10^{-9}	2.4×10^{-13}	
Au^b	7.25×10^{-4}	$4.23 imes 10^{-5}$	$1.2 imes 10^{-8}$	3.0×10^{-13}	
$Si_3N_4^{\ c}$	*	*	2.5×10^{-7}	1.0×10^{-1}	
Total				$5.5 imes10^{-13}$	

^aRef. 17 (Electronic heat capacity estimated assuming a doping density of $4.9 \times 10^{-16}/\text{cc}^2$).

^bRef. 18.

°Ref. 19.

in P.D. Mauskopf et al., 1997

"Du détecteur à la mesure"

Calibration Planck-HFI 1. le CQM (Cryogenic Qualification Model) à l' IAS (2004)

Pierre de Marcillac

Calibration Planck-HFI 2. Mesures dans les six bandes du corps noir modulé @ 10Hz

Pierre de Marcillac

"Du détecteur à la mesure"

Calibration Planck-HFI Modèle CQM: un NEP dans les spécifications !

Pierre de Marcillac

Un consortium international de 50 instituts (\approx Planck₂₀₀₅ \times 2)

Juin-juillet 2006: calibration @ l'IAS du modèle de vol de Planck HFI

- Novembre 2006: livraison à l'industriel (Alcatel-Alenia-Space à Cannes) des modèles de vol
- Juin 2007: intégration du télescope avec la charge utile

Prochaines étapes:

- CSL (Centre Spatial de Liège) intégration complète du satellite
- ☐ fin juillet 2008: date officielle de lancement (Ariane 5)

Planck-HFI: calibration IAS (juin-juillet 2006)

Planck-HFI: test des déformations du télescope à froid

Pierre de Marcillac

"Du détecteur à la mesure"

Intégration de Planck HFI, LFI et d'un refroidisseur à sorption

Intégration du télescope et des instruments

Pierre de Marcillac

"Du détecteur à la mesure"

Roscoff / 13-21 juin 2007

Le satellite Planck à Cannes (Hall Alcatel-Alenia-Space) en juin 2007

Pierre de Marcillac

"Du détecteur à la mesure"

Détection de la Matière noire

"Du détecteur à la mesure"

Détection de la Matière Noire Galactique

Contenu énergétique de l'Univers

 ✓ présence à toutes les échelles de matière sombre

 ✓ argument le plus convaincant: platitude des courbes de rotation des galaxies spirales, dont notre Voie Lactée au delà des concentrations de matière visible (gaz, étoiles)

✓ densité labo≈0.3 GeV/cc

Une des candidats le mieux motivé:

- Neutralino χ (la plus légère des Particules
 SuperSymétriques; LSP)≡ Matière Noire Froide
- $\bullet M \approx 6 \ GeV/c^2 {\rightarrow} qq \ 100 \ GeV/c^2$
- Energies labo ≈ qq keV
- •Interaction: diffusion élastique \rightarrow reculs
- Description précise ? paramètres libres ++
- ■Sections efficaces ↓↓ (WIMPs) mais prédictibles

Weakly Interactive Massive Particles

"Du détecteur à la mesure"

Détection de la matière noire: spectres attendus

Pierre de Marcillac

"Du détecteur à la mesure"

- Mχ=2, 7, 12, ...,102 GeV/c²
- Modèle de halo « isotherme »
 - V₀=230 km.s⁻¹
 - V_{échappement} = 600 km.s⁻¹
 - v_{terre}=244 km.s⁻¹ (mars)
 - facteur de forme nucléaire

•Cinématique élémentaire $\rightarrow E_{max}$ (adaptation des masses: de la pétanque en labo !)

 Les faibles énergies de recul sont toujours « peuplées »→ spectres piqués à basse énergie: on recherche le meilleur seuil → bolomètres !

Détection de la Matière noire: l'appel des souterrains

Pierre de Marcillac

Détection de la matière noire: bref état des lieux

• 1985: principes (Goodman & Witten)

 1990: faisabilité de seuils ≈ keV démontrée dans bolomètres à cibles massives (plusieurs centaines de grammes) Ge, Si, Al₂0₃

→ manips en souterrain: bruit de fond élevé (radioactivité !)

• 2000: annonce d'une détection positive (expérience DAMA au GranSasso) scintillateurs Nal à 300K; détection par la signature attendue matière noire [« modulation annuelle »: la composition des vitesses terre/soleil induit une modulation de l'énergie et du flux des WIMPs]. Résultats très controversés, non vérifiés par les expériences postérieures, dans le cadre des modèles standards des WIMPs: mais motivation puissante pour les expérimentateurs !

- 1990→2000: **R&D discriminations par techniques mixtes**
 - charges & chaleur: sur Ge (CDMS, EDELWEISS) & Si (CDMS)
 - Iumières & chaleur (CRESST, ROSEBUD)
- 2000→2005
 - retour en souterrains: espace des phases du MSSM à portée de main des détecteurs cryogéniques
- 2007: un sérieux compétiteur : Xe liquide scintillant

Détection de la Matière noire

Avec discrimination « Charges & chaleur »

CDMS (US), EDELWEISS (France)

"Du détecteur à la mesure"

EDELWEISS

ionisation

Expérience pour DEtecter Les Wimps En Slte Souterrain

- ✓ tunnel du Fréjus (Laboratoire Souterrain de Modane; 4500mwe; 1990→)
- ✓ collaboration CNRS IN2P3 (CSNSM, IPNL), INSU (IAP), SPM (CRTBT)
 & CEA (DAPNIA, DRECAM) + Univ. Kalsruhe; JINR Dubna (≈ 50 chercheurs)
- ✓ technique mixte « charges / chaleur » sur Ge;
- ✓ thermométrie EDELWEISS-I:Ge-NTD (≠ CDMS: TES)
- ✓ meilleurs résultats mondiaux en 2003
- ✓ Edelweiss-I
 - 3 x 320g Ge; exposition « fiducielle » de 62kg. jour
 - évts dans la zone des reculs (probablement des évts de surface mal collectés)
- Edelweiss-II (démarre en 2006 au LSM)
 - 10 à 40 kg de détecteurs à terme
 - techniques de discrimination des évts de surface (suite aux R&D CSNSM en cours)

Roscoff / 13-21 juin 2007

Chaleur

(Ge-NTD

Edelweiss: Installation au Fréjus

Pierre de Marcillac

"Du détecteur à la mesure"

Détecteurs Edelweiss: discrimination gammas/reculs

Runs de fond Edelweiss-I (2000 \rightarrow 2003):

exposition 62 kg.jour

• 59 événements, concentrés à basse E, probablement des événements de surface mal collectés sous les électrodes...

 \rightarrow **R&D (CSNSM) sur la localisation**: (1) analyse en temps résolu du signal de charge (2) films NbSi sensibles à la composante athermique des phonons issue des interactions.

Edelweiss-II

Edelweiss-II: amélioration des fonds

♦ Radiopureté

Détecteurs HPGe dédiés pour le contrôle systématique de tous ldes matériaux

- Salle blanche (classe 100 autour du cryostat, classe 10 000 pour le blindage total)
- Air déradonisé (de NEMO3)
- 20 cm Pb (blindage gamma)
- Blindage neutron
 - EDW-I : 30cm paraffine
 - EDW-II : **50 cm PE** et meilleure couverture
- ♦ véto µ (>98% couverture)

• Détecteurs de Neutrons en coïncidence avec les vétos (en cours)

Sensibilité attendue (EDW-I * 100)
 σ_{w-n} ≈10⁻⁸ pb (phase 100 détecteurs)
 0.002 évt./kg/jour (Erecul>10keV)

= neutrons venant des μ de haute énergie interagissant dans la roche

Edelweiss-II: amélioration des cryostats

- ✓ Sans azote: 3 "Pulse tube" (écrans 50K and 80K) and reliquéfacteur He (conso.≈ 0)
- ✓ large volume 50 l
- ✓ jusqu'à ≈ 120 détecteurs

- \Rightarrow auto blindage
- \Rightarrow statistique ++
- ✓ disposition compacte and hexagonale \Rightarrow coïncidences ++ (pour fond n)

5

Edelweiss-II: amélioration des détecteurs

• Développés au CEA Saclay & par Camberra-Eurisys

- Sous couche amorphe Ge and Si (meilleure collection de charge pour les évts de surface)
- ◆ taille optimisée des NTD et meilleure homogénéïté de Ttravail (16-18 mK) :
 résolution ≈ keV

 Nouveaux support & connecteurs (Téflon et cuivre seulement)

Ils sont tous au LSM

- 7*400g détecteurs Ge/NbSi :

- Développés au CSNSM Orsay
- ♦ 2 NbSi thermomètres à films minces NbSi pour la réjection active des événements de surface
- R&D en cours avec détecteurs de 200g en labos.

1 @ LSM

+ **R&D...**

Le montage d' Edelweiss-II en 2006

♦ 8 bolomètres actifs (/15)
 ● 2 EDW-I Ge/NTD tour à la EDW-I

• 4 EDW-I Ge/NTD supports EDW-II :

3 centraux sans écran Cu, 1 en coïncidence

- 1 200g Ge/NbSi testé au LSM (en 2004)
- 1 400g Ge/NbSi
- 1 IAS 50g "chaleur et lumière" (saphir; Al2O3)

...et des retards dûs à des problèmes de "manpower"

Détection de la Matière noire

Avec discrimination « Lumière & chaleur »

ROSEBUD (Ge-NTD; tunnel du Canfranc)

Collaboration IAS / Univ de Saragosse

CRESST (TES; tunnel du GranSasso)

Collaboration MPI & TU Münich, Univ. d'Oxford, Univ. de Tübingen

Bolomètres massifs scintillants

Bolomètres scintillants: R&D et réalisations IAS

BGO 91g & 46g; disque Ge Ø25mm

Tests à 20mK de cristaux

- scintillants à 300K: CaWO₄, BGO, GSO, YAP, SrF₂,...
- non « scintillants » à 300K mais « d'intérêt » Saphir (Al₂O₃), TeO₂, LiF,...

à 20mK tout scintille, tout discrimine !

- Rendements lumineux ?
- Mécanismes d'émission ?
- Propriétés thermiques ?
- Radioactivités internes ?
- maille moléculaire !

- détecteurs optiques + gros, + fins + froid
- interprétation des reculs + difficile...
- déclinaison « à l'infini » des cibles !
- pas de phénomènes de surface
- extinctions (quenching) >> Ge

"Du détecteur à la mesure"

Exemple de discrimination : bolomètre de 54g en SrF₂

Au menu de ROSEBUD en 2007: BGO et saphir

- 46g BGO
- radioactivité: ²⁰⁷Bi
- seuil réjection à 90% CL: 23 keV

- 50g saphir
- radioactivité ?
- seuil réjection à 90% CL: 10 keV

Tests au Canfranc en 2007 (neutrons ambiants & et rayons cosmiques $\downarrow \downarrow \downarrow$):

Zones mortes ? Evénements atypiques ? Radioactivités internes?

La détection directe de la matière noire: une rude compétition !

Désintégrations rarissimes

(par bolomètres scintillants !)

Désintégrations alpha de 209 Bi (IAS; 2002) $T_{1/2} \approx 2 \ 10^{19}$ ans 180 W (CRESST;2004) $T_{1/2} \approx 2 \ 10^{18}$ ans

Discrimination à l'oeuvre dans 46g BGO (basse énergie)

BGO à « haute » énergie: 7 (évts Bi-zarres)!

Diagramme de discrimination dans 46g BGO (5j)

Identification parcascades α

Une triple signature unique !

"Du détecteur à la mesure"

Spectres dans 46g BGO

Isotopes & excès de masse « α », Q $_{\alpha}$

Isotopes lourds stables, Q_{α}

Discrimination dans 91g BGO

Spectres alphas finaux

Pierre de Marcillac

"Du détecteur à la mesure"

Au tour de ¹⁸⁰W... (collaboration CRESST en 2004)

« The natural -decay of ¹⁸⁰W has been unambiguously detected for the first time. The peak is found in a (γ , β and neutron)-free background spectrum. This has been achieved by the simultaneous measurement of phonon and light signals with the CRESST cryogenic detectors. A half-life of $T_{1/2} = (1.8 \pm 0.2) \times 10^{18}$ y and an energy release of Q = (2516.4 ± 1.1 (stat.) ± 1.2 (sys.)) keV have been measured. New limits are also set on the half-lives of the other naturally occurring tungsten isotopes. »

Références

Comptes-rendus des conférences

[tous les deux ans]

- □ LTD (Low Temperature Detectors)
 - aspects techniques
 - publiés généralement dans NIMA
 - LTD-11 à Tokyo en 2005
 - LTD-12 à Paris en 2007

□ TAUP (Topics in Astroparticle and Underground Physics)

- physique des expériences
- publiés

2003: généralement dans Nuclear Physics B (Proc. Suppl.)

2005: Journal of Physics: Conference Series (accès libre)

- TAUP-2005 à Saragosse
- TAUP-2007 à Sendai (Japon)

