

Ecole IN2P3 - Du détecteur à la mesure Isabelle Wingerter-Seez (LAPP-Annecy)

Comment voir l'invisible ?

Recherche de Phénomènes Nouveaux

Recherche de Phénomènes Nouveaux

Recherche de Phénomènes Nouveaux

Chaîne de désintégration

Faisceaux linéaires, circulaires, collisions, cibles fixes

L F S

J. Virdee

Comment détecter les particules ?

- Hypothèse: toutes les particules produites se désintègrent en particules stables connues et détectables: e[±], γ, μ[±], p, π⁰, π[±]
- Seules les particules chargées sont mesurables
- Les principes de détection reposent sur les interactions des particules chargées avec la matière:
 - Ionisation
 - Emission de lumière au voisinage d'un noyau (Bremsstrahlung-Rayonnement de freinage)
 - Conversion du photon en paire d'électrons au voisinage du noyau
 - Dérive des électrons dans un champ électrique
 - Courbure des particules chargées dans un champ magnétique
 - Lumière/rayonnement Čerenkov
 - Scintillation

Cible fixe vs oignon

- Limited solid angle $d\Omega$ coverage
- rel. easy access (cables, maintenance)

Collider Geometry

" 4π multi purpose detector"

- "full" d Ω coverage
- very restricted access

C. Joram

Structure générale d'un détecteur en Physique des Particules

Un détecteur polyvalent

• Shopping list:

- Reconnaissance des électrons, des photons, des muons, des jets, des hadrons, des vertex déplacés (issus de la désintégration des hadrons beaux, euxmêmes indicateurs de processus recherchés)
- Découpage très fin de l'espace pour localiser précisément le passage des particules
- Mesure précise de l'énergie des particules et de l'impulsion des particules chargées
- Herméticité pour collecter le maximum des particules produites lors de l'interaction
- Electronique rapide (40MHz) pour ne pas avoir de temps mort
- Capacité de déclencher sur des objets rares sans s'aveugler.
- Résistance aux radiations
- Prix raisonnable

La structure en oignon

Mesure de l'impulsion

Aimants - Champ Magnétique

- $p \checkmark \Rightarrow B$ doit augmenter
- $B \checkmark \Rightarrow La puissance stockée$

dans l'aimant augmente Depuis LEP, aimants supraconducteurs

Aimants - Champ Magnétique

- $p \checkmark \Rightarrow B$ doit augmenter
- $B \checkmark \Rightarrow La puissance stockée$
- dans l'aimant augmente Depuis LEP, aimants supraconducteurs

Chambre à Projection Temporelle (TPC)

- Grand volume actif avec reconstruction 3D
 - x-y avec les chambres à fils + cathodes des MWPC
 - z avec le temps de dérive

Performance typique détecteur de traces

• Résolution en impulsion (μ , π)

$$\frac{\sigma(P_T)}{P_T} \approx 3.6 \times 10^{-4} P_T(GeV) \oplus \frac{1.3 \times 10^{-2}}{\sqrt{\sin\theta}}$$

• Détermination du point d'impact

$$\sigma(d_0) \approx 11 \oplus \frac{73}{p_T \sqrt{\sin\theta}} (\mu m)$$

р _т	50 GeV/c	100 GeV/c	1 TeV/c
σ (p_T)/p_T	2.2%	4%	36%
р _т	0.5 GeV/c	5 GeV/c	100 GeV/c
ഗ(d₀)	150 μm	23 μm	11 μm

- Détermination de la charge determination
 - misidentification <2% (5%) pour des μ (électrons) à p_T =1TeV

Cours de Patrice Siegrist, Laurence Lavergne

Identification des particules

- La nature des particules produites est un indice très important pour comprendre l'interaction qui s'est produite:
 - masse
 - charge électrique
- On exploite les différentes propriétés de chaque particules pour les identifier:
 - e/ μ : tous deux des leptons (interaction faible & em) mais m_{μ} $\simeq 200 \times m_e$
 - e/n: tous deux chargés, mais interactions différentes: em vs had, $m_{\pi} \simeq 200 \ x \ m_{e}$
 - п/К: masse différentes
- Méthodes
 - Temps de vol (masse)
 - dE/dx (masse)
 - Čerenkov
 - Forme des impacts (type d'interaction).....

Mesure du temps de vol

Mesure du temps de vol

Calorimètres

- Les calorimètres mesurent l'énergie déposée par la particule incidente alors qu'elle interagit dans la matière
- Les calorimètres arrêtent les particules sauf celles qui interagissent très peu: muons & neutrinos
- Ils ont été conçus pour mesurer les neutres: γ, π⁰
- Ils doivent suffisamment profonds pour contenir tous les produits de l'interaction
 - \Rightarrow ils sont placés après le trajectographe
- Deux rôles:
 - Faire interagir les particules
 - Collecter l'énergie déposée
- Deux types d'interactions:
 - électromagnétique
 - hadronique

Calorimètres

Performances typiques des calorimètres

- Résolution en énergie: $\Delta E/E \sim a/\sqrt{E \oplus c \oplus b/E}$
 - e[±], γ : ~% à 100 GeV
 - jets: ~10% à 100 GeV
- Linéarité:~ ‰ %
- Identification des particules: Séparation électromagnétique/hadronique
- Résolution en temps: 100ps-1ns

Détecteurs de muons

- Seuls les muons et les neutrinos ont échappé aux calorimètres
- Les muons sont chargés et peuvent donc être détectés en sortie du calorimètre

Détecteur à muons

• Avec un champs magnétique, on peut aussi mesurer l'impulsion des muons

Détecteur à muons

• Avec un champs magnétique, on peut aussi mesurer l'impulsion des muons

Herméticité

- Seuls les neutrinos ont échappé à tous ces détecteurs.
- Avec un détecteur étanche on pourrait mesurer l'énergie emportée par les neutrinos ou autre nouvelle particule.
- On peut mesurer l'énergie perdue dans la direction transverse aux faisceaux (ET^{miss})
- Example: la découverte du boson W en 1983: un électron + de l'énergie transverse manquante

Herméticité

- Seuls les neutrinos ont échappé à tous ces détecteurs.
- Avec un détecteur étanche on pourrait mesurer l'énergie emportée par les neutrinos ou autre nouvelle particule.
- On peut mesurer l'énergie perdue dans la direction transverse aux faisceaux (ET^{miss})
- Example: la découverte du boson W en 1983: un électron + de l'énergie transverse manquante

Points clés de l'herméticité

- Cables
- Angles d'incidence

Hors accélérateur

- Depuis la terre, depuis l'espace, sous la mer, sous la glace, en ballon, dans l'hémisphère Nord, dans l'hémisphère Sud pour détecter:
 - Rayons cosmiques (AUGER,...)
 - Neutrino solaires, atmosphériques (ANTARES)
 - Rayonnement (HESS, CTA)
 - La matière noire (AMS,....)
 - L'anti-matière (AMS)
- Ces détecteurs utilisent des techniques semblables à celles utilisées auprès des accélérateurs et récoltent l'ionisation ou l'énergie d'excitation de la matière

Expériences neutrino

- Les neutrinos interagissent peu mais ils sont traqués depuis des décennies
 - auprès des centrales nucléaires
 - en provenance de l'espace
 - en provenance Detection principle

4/18

CNGS+Gran Sasso + OPFRA

Soon

Hom

beam

100m

Decay tube

Heliumbags Reflector

La mécanique

• Spécifications

- robuste & transparente
- Aligner les composants à qques µm
- 7000 tonnes positionnées à 100µm
- coordination entre les différents éléments
- tenue aux radiations
- installation dans les zones expérimentales

Cours de Michel Raymond

L'électronique

- Lecture des signaux induits dans les détecteurs
 - Analogique Numérique
 - Embarquée (espace, sous-marine, dans les cavernes LHC)
 - Frontend Backend
- Dans presque tous les cas:
 - Bas bruit
 - Rapide
 - Basse consommation
- Conditions extrêmes
 - Radiations
 - Températures
 - Longue durée de vie
- Toujours le coût

Cours de Christophe de la Taille

Installer et cabler

Le déclenchement

De la conception à l'exploitation

