Electromagnetic separators

Ulli Köster

Institut Laue Langevin Grenoble, France

Institut Laue Langevin

- founded 1967
- today 13 member states
- operates most powerful neutron source of the world: 58 MW high flux reactor, 1.5-10¹⁵ n./cm²/s maximum neutron flux
- over 40 instruments, mainly for neutron scattering
- user facility: 2000 scientific visitors from 45 countries per year
- Director General: Richard Wagner
- Nuclear physics instruments: LOHENGRIN, GAMS

LOHENGRIN Setup

Outline

- 1. Definitions and history
- 2. Basics of ion optics and dispersive elements

3. Static fields

- a) deflection spectrometer
- b) retardation spectrometer

4. Dynamic fields/separation

- a) Time-of-Flight spectrometer
- b) Radiofrequency spectrometer
- c) Traps
- 5. Technical realization (ion sources, etc.)
- 6. "Real examples" for nuclear physics applications
 - a) ISOL
 - b) Recoil separators
 - c) Fragment separators
 - d) Spectrometer

Definitions

- spectrometer: electrical detection
- spectrograph: photographic or other non-electrical detection
- also used: spectroscope
- mass / energy / isotope separator: assures a physical separation of different masses / energies / isotopes

Super-FRS at FAIR, Germany

Importance of electromagnetic spectrometers

Thomson 1897: cathode rays

"Cathode rays", J.J. Thompson, Phil. Mag. 44 (1897) 293.

Noble prize in physics 1906 for discovery of the electron and the determination of its m/q ratio.

Goldstein 1886: Kanalstrahlen

Figure 1.3 Goldstein's glow discharge tube (1886) for generation of positively charged ions. (C. Brunnée, Int. J. Mass. Spectrom. Ion Proc. 76, 125 (1987). Reproduced by permission of Elsevier.)

First fluorescent lamp and ion source.

Figure 1.4 Schematic of a Wien velocity filter with EB configuration: combination of electric (E) and magnetic (B) field (Wien, 1898). (C. Brunnée, Int. J. Mass. Spectrom. Ion Proc. 76, 125 (1987). Reproduced by permission of Elsevier.)

Wien: Nobel price in physics 1911 for discovery that "Kanalstrahlen" carry positive charge

Thomson 1910: parabola mass spectrograph

Electric field parallel to magnetic field

Figure 1.5 Parabola mass spectrograph constructed by J. J. Thomson (1910) with a discharge tube as ion source, a superimposed electrical field and a magnetic field oriented parallel to it for ion separation, and a photoplate for ion detection. (H. Kienitz (ed.), Massenspektrometrie (1968), Verlag Chemie, Weinheim. Reproduced by permission of Wiley-VCH.)

Neon consists of two isotopes with mass 20 and 22

Figure 1.6 Mass spectrum of neon with masses 20 and 22 u measured by J. J. Thomson (1913) using his parabola mass spectrograph is shown in Figure 1.5. (H. Kienitz (ed.), Massenspektrometrie (1968), Verlag Chemie, Weinheim. Reproduced by permission of Wiley-VCH.)

Parabola spectrograph

transit time through field:t = L/vvertical displacement: $y = \frac{1}{2} U/d q/m (L/v)^2$ horizontal displacement: $x = \frac{1}{2} B q/m L^2/v$ $y = k m/q x^2;$ $k = 2 U/(d B^2 L^2)$

The LOHENGRIN fission fragment separator

Angular focusing in x and y direction.

Animation!

Aston 1919: velocity focusing spectrograph

Aston's design for the mass spectrograph.

Aston: velocity focusing gives factor 10 improvement in mass resolution ($\Delta m/m = 1/130$)

Noble prize in chemistry 1922 for the discovery that elements may have isotopes of different mass (²⁰Ne, ²¹Ne and ²²Ne).

Dempster 1918: 180 degree spectrometer

Figure 1.7 Mass spectrometer from A.J. Dempster (1918). A – ion source; B – electromagnet; C – Faraday cup; D – electrometer. (H. Kienitz (ed.), Massenspektrometrie (1968), Verlag Chemie, Weinheim. Reproduced by permission of Wiley-VCH.)

Calutron 1942: electromagnetic isotope separation

Large scale electromagnetic isotope separation

Collector plates of a Calutron

1945: large scale electromagnetic isotope separation

1945: "Impact" of electromagnetic isotope separation

Hiroshima: 60 kg of isotopically enriched ²³⁵U

Aston 1925: improved mass spectrograph

Improved version gives mass resolution: $\Delta m/m = 1/600$

Accuracy of mass determination: 10⁻⁴

Used to study deviations of atomic masses m from A.

Introduced: "packing fraction" = m/A – 1

Systematic investigation of nuclear binding energies

Carbon isotopes

Chart of the nuclides

Why "ion beams"?

Production:

Detection:

high radiation environment

low radiation background

ORTE

Transport methods:

- carry ("SRAFAP")
- drive (G.T. Seaborg and W.D. Loveland, The Elements beyond Uranium, John Wiley & Sons, 1990)
- transport shuttle with pressurized air
- transport in gas-jet
- pump through vacuum system
- send as ion beam

Irradiations of targets

Off-line mass separator

1951: first ISOL experiment at Niels Bohr Institute

Mat. Fys. Medd. Dan. Vid. Selsk. 26, Nr. 7 (1951).

Isotope Separation On-Line

Isotope selection

Isotope selection with ISOL method

ISOLDE

CERN

- Ionization to q = 1+
- Acceleration to 60 keV
- Mass selection by magnetic deflection
- B ρ = p/q $\sim \sqrt{A}$

Z selection by chemically selective step

The challenge of the extremes!

1. low cross-sections

- \Rightarrow optimize efficiency
- **2.** enormous production of isobars \Rightarrow optimize selectivity
- 3. short half-lives

 \Rightarrow optimize rapidity

Optimize event rate

All steps of the separation chain need to be optimized!

Optimize RIB intensity

All steps of the separation chain need to be optimized!

 $\mathbf{r} = \mathbf{\Phi} \cdot \boldsymbol{\sigma} \cdot \mathbf{N} \cdot \boldsymbol{\varepsilon}_{\mathsf{target}} \cdot \boldsymbol{\varepsilon}_{\mathsf{source}} \cdot \boldsymbol{\varepsilon}_{\mathsf{transp}} \cdot \boldsymbol{\varepsilon}_{\mathsf{det}}$

powerful accelerator

 \Rightarrow accelerator technology

Optimize RIB intensity

All steps of the separation chain need to be optimized!

 $\mathbf{r} = \Phi \cdot \sigma \cdot \mathbf{N} \cdot \varepsilon_{\text{target}} \cdot \varepsilon_{\text{source}} \cdot \varepsilon_{\text{transp}} \cdot \varepsilon_{\text{det}}$

high production cross-sections

 \Rightarrow nuclear physics
All steps of the separation chain need to be optimized!

 $\mathbf{r} = \Phi \cdot \boldsymbol{\sigma} \cdot \mathbf{N} \cdot \boldsymbol{\varepsilon}_{target} \cdot \boldsymbol{\varepsilon}_{source} \cdot \boldsymbol{\varepsilon}_{transp} \cdot \boldsymbol{\varepsilon}_{det}$ reliable "thick" targets $\Rightarrow materials \ science$

All steps of the separation chain need to be optimized!

(1.)

Extraction efficiency from target determined by:

- bulk diffusion
- \Rightarrow solid state physics
- surface desorption
- \Rightarrow surface chemistry
- effusion
- \Rightarrow gas phase chemistry

strongly element dependent!

Optimize RIB intensity and purity

Factors are highly correlated and isotope dependent!

U.K., Prog. Part. Nucl. Phys. 46 (2001) 411.

Particle accelerators

$\mathbf{r} = \mathbf{\Phi} \cdot \boldsymbol{\sigma} \cdot \mathbf{N} \cdot \boldsymbol{\varepsilon}_{\mathsf{target}} \cdot \boldsymbol{\varepsilon}_{\mathsf{source}} \cdot \boldsymbol{\varepsilon}_{\mathsf{transp}} \cdot \boldsymbol{\varepsilon}_{\mathsf{det}}$

CERN synchrocyclotron 1957-1990

600 MeV p up to 4 μA

910 MeV ³He 1 GeV ¹²C

CERN accelerator structure **CERN-PS Booster Synchrotrons** CMS $E_{p} = 1.4 \text{ GeV}$ LHC **3•10**¹³ protons/pulse = 5 μ C COMPASS $I_{average} = 4 \mu A$ p_{average} = 6 kW SPS LHC-b ALICE ATLAS LHC: Large Hadron Collider West Area - neutrinos SPS: Super Proton Synchrotron AD: Antiproton Decelerator CNG ISOLDE: Isotope Separator OnLine DEvice East Area PSB: Proton Synchrotron Booster PS: Proton Synchrotron PSB LINAC: LINear ACcelerator PS LEIR: Low Energy Ion Ring CNGS: Cern Neutrinos to Gran Sasso protons antiprotons Pb ions neutrinos to Gran Sasso (I) Gran Sasso (I) 730 km

$\mathbf{r} = \Phi \cdot \sigma \cdot \mathbf{N} \cdot \varepsilon_{target} \cdot \varepsilon_{source} \cdot \varepsilon_{transp} \cdot \varepsilon_{det}$

Direct reactions

14				Si 22	Si 23	Si 24	Si 25	Si 26	Si 27	Si 28	Si 29	Si 30
13					AI 22	AI 23	AI 24	AI 25	AI 26	AI 27	AI 28	AI 29
12				Mg 20	Mg 21	Mg 22	Mg 23	Mg 24	Mg 25	Mg 26	Mg 27	Mg 28
11					Na 20	Na 21	Na 22	Na 23	Na 24	Na 25	Na 26	Na 27
10			Ne 17 109 ms	Ne 18 1.67 s	Ne 19 17.2 s	Ne 20	Ne 21	Ne 22	Ne 23	Ne 24	Ne 25	Ne 26
9				F 17 64.8 s	F 18 110 m	F 19	F 20	F 21	F 22	F 23	F 24	F 25
8		O 14 70.6 s	O 15 122 s	O 16	O 17	O 18	O 19	O 20	O 21	O 22	O 23	O 24
7		N 13 10 m	N 14	N 15	N 16	N 17	N 18	N 19	N 20	N 21	N 22	N 23
6		C 12	C 13	C 14	C 15	C 16	C 17	C 18	C 19	C 20		C 22
Ζ	N	6	7	8	9	10	11	12	13	14	15	16

¹⁸O(p,n)¹⁸F cross-sections

proton energy (MeV)

- 1. Direct reactions
- (p,n), (³He,n), (α,n), (n,α),...
- high cross-sections, products relatively close to stability
- driver beams from (low-cost) cyclotrons

- 1. Direct reactions
- (p,n), (³He,n), (α,n), (n,α),...
- high cross-sections, products relatively close to stability
- driver beams from (low-cost) cyclotrons
- 2. Heavy-ion fusion-evaporation
- produces neutron-deficient heavier isotopes
- small energy window in vicinity of Coulomb barrier (some MeV/nucl.)
- requires heavy ion beams \Rightarrow bigger cyclotrons or LINACs

- 1. Direct reactions
- high cross-sections, products relatively close to stability
- driver beams from (low-cost) cyclotrons
- 2. Heavy-ion fusion-evaporation
- produces neutron-deficient heavier isotopes
- small energy window in vicinity of Coulomb barrier (some MeV/nucleon)
- requires heavy ion beams \Rightarrow bigger cyclotrons or LINACs
- 3. Deep inelastic collisions (multi-nucleon transfer)
- products close to target, mass-flow towards stability
- light to heavy ion beams (tens of MeV/nucleon)
- only method to reach neutron-rich isotopes with N_{product} > N_{target} +1
- 4. Spallation
- intranuclear cascade heats nucleus
- evaporation of preferentially neutrons \Rightarrow neutron-deficient products
- high cross-sections for products close to target
- requires protons of >100 MeV \Rightarrow big p cyclotron, synchrotron or LINAC

Spallation + Fragmentation + Fission

T. Enqvist et al., Nucl. Phys. A686 (2001) 481.

5. Fragmentation

- many cross-sections show little energy dependence in the region 40-2000 MeV/nucleon
- target fragmentation needs e.g. high energy protons (see spallation)
- projectile fragmentation needs high energy heavy ions

 \Rightarrow huge cyclotron, synchrotron or LINAC

High energy nuclear reactions

 $\sigma_i = 44.9 \ A^{0.7} \ mb$

R. Silberberg and C.H. Tsao, Phys. Rep. 191 (1990) 351.

Low-energy fission

"Low-energy" fission (²³⁸U(γ,f) from 50 MeV e⁻)

High-energy fission (500 MeV p on ²³⁸U)

Rubidium cross-sections

5. Fragmentation

- many cross-sections show little energy dependence in the region 40-2000 MeV/nucleon
- target fragmentation needs high energy protons (see spallation)
- projectile fragmentation needs high energy heavy ions

 \Rightarrow huge cyclotron, synchrotron or LINAC

6. Fission

- induced by: "time" (spontaneous), neutrons, photons, protons, heavy ions, antiprotons, pions, post fusion-evaporation, beta-decay/EC
- highest cross-sections for thermal neutrons
- with increasing excitation energy symmetric and far asymmetric fission is favored, but the products get in average less neutron-rich!
- driver accelerators: reactors, medium-energy (some MeV to tens MeV) deuterons from cyclotron or LINAC, microtron or LINAC for electron beams,...

Radioactive ion beam facilities for fission products

Previous, presently operating and future RIB facilities using fission:

- ²⁵²Cf(sf) CARIBU
- ²³⁵U(n_{th},f) OSTIS, OSIRIS, LOHENGRIN, TRIGA-SPEC, CARR-ISOL, PIAFE, MAFF, PIK-ISOL
- ²³⁸U(p,f) ISOLDE, IRIS, LISOL, JYFL, HRIBF, TRIAC, ISAC-II, SPES
- W(p,xn..) > ²³⁸U(n,f) ISOLDE, IRIS, ISAC-II, EURISOL
- $^{12}C(d,n) > ^{238}U(n,f)$ PARRNe, SPIRAL-II
- $^{2}H(d,n) > ^{238}U(n,f)$ SPIRAL-II
- 9 Be(d,n) > 238 U(n,f) PARRNe
- $^{7}Li(d,n) > ^{238}U(n,f)$ FRIB
- $W(e^{-},\gamma) > {}^{238}U(\gamma,f) ALTO, DRIBS, HRIBF upgrade, ISAC upgrade$
- ¹H, ⁹Be..²⁰⁸Pb(²³⁸U,f) GSI-FRS, RIKEN, FRIB, FAIR

ISOL facilities using fission

Facility	Location	Tar	get	Driv	Fiss. rate		
			g/cm2	Туре	MeV	uA	per s
TRIGA-SPEC	Uni Mainz, D	249Cf	3E-4	(n,f)	3E-8	"0.03"	2E+08
CARIBU	Argonne, US	252Cf	nr	sf	nr	nr	1E+09
ALTO	Orsay, F	238U	40	(g,f)	50	10	8E+10
TRIAC	Tokai, JP	238U	1	(p,f)	36	3	1E+11
IGISOL	Jyväskylä, FIN	238U	0.12	(p,f)	30	10	1E+11
HRIBF	Oak Ridge, US	238U	2.1	(p,f)	42	10	4E+11
ISOLDE	CERN, CH	238U	50	(p,f)	1400	2	2E+12
CARR-ISOL	Beijing, CN	235U	3E-2	(n,f)	3E-8	"32"	7E+12
SPES	Legnaro, I	238U	2.5	(p,f)	40	200	1E+13
ISAC2	Vancouver, CAN	238U	(40)	(g,f)	50	10000	5E+13
SPIRAL2	Caen, F	238U	(40)	d>(n,f)	40	5000	<1E14

ISAC @ TRIUMF (fission upgrade)

- 50 MeV, 10 mA electron LINAC
- <100 kW till 2015, 500 kW till 2020
- aim 4.6E13 fissions/s with liquid Hg converter
- but also 500 MeV protons with maximum 10 μ A on UC_x

SPIRAL2 facility at GANIL

SPIRAL RIB production module

Maintenance and Storage cells

1-2.2 GeV, multi-MW proton driver

Several direct target stations (ca. 100 kW)

One Hg spallation + fission target station (>1 MW, i.e. 1E15 fissions/s)

Multiple user operation in parallel

Low-energy beam area

Post-acceleration with LINAC up to ca. 10 A.MeV

Post-acceleration to ca. 100 A.MeV with LINAC or cyclotron

Fragmentation of post-accelerated RIBs

Commissioning: > 2020?

IGISOL method

 $X^{n+} + He^0 \rightarrow X^{(n-1)+} + He^+$ or

 $X^{n+} + Ar^0 \rightarrow X^{(n-1)+} + Ar^+$

rapid reduction of ionic charge state to 2+ or 1+ by charge exchange reactions with buffer gas

IP(He)=24.6 eV, IP(Ar)=15.8 eV

remains in 1+ or 2+ charge state until charge exchange reaction with impurity molecule $(O_2, N_2,...)$ occurs

Volatility of the elements

1			T ()	o vap	oor >	0.0	1 mb	ar) <	< 100	Ĵ							2
н		F(p vapor > 0.01 mbar) < 400 C													Не		
3	4		T (µ	o vap	or >	• 0.0 ^	<u>1 mb</u>	<u>ar) <</u>	<u>< 100</u>	$\Im 0$		5	6	7	8	9	10
Li	Ве		T (p	o vap	or >	0.0	1 mb	ar) <	< 20 0	T 0		В	С	Ν	0	F	Ne
11	12		T (1	o vap	or >	0.0	1 mb	ar) >	200	3 0		13	14	15	16	17	18
Na	Mg	AI SI P S CI Ar												Ar			
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112						
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

LISOL

CARIBU: Radioactive Beams from ²⁵²Cf(sf) ATLAS

1 Ci ²⁵²Cf source (1E9 fiss./s) expected end of 2009

TRIGA-SPEC at Mainz reactor

- 0.5 mg ²³⁵U or 0.5 mg ²³⁹Pu or 0.3 mg ²⁴⁹Cf
- 1.8E11 n./cm²/s
- 2E8 fiss./s
- start 2009

ISOL@CARR

- 60 MW China Advanced Research Reactor (CARR).
- Expected start of operation in 2009.
- gas-jet ISOL system
- 25 mg ²³⁵U (90%) in Φ=2E14 n./cm²/s
- 7E12 fiss./s

Optimize RIB intensity

All steps of the separation chain need to be optimized!

Target (1967)

Target and ion source (1968)

Compact target and ion source (1974)

Robot handling

ISOLDE target and ion source unit

Historical development

Miniaturisation \Rightarrow faster releaseStandardisation \Rightarrow easier mass-productionRemote handling \Rightarrow higher activities

SPIRAL target and ion source unit

GSI-ISOL target and ion source unit

ion source

Variants of ISOL facilities

- **1a protons on thick (heavy) target**: fragmentation, spallation, fission ISOLDE-CERN (1.4 GeV), IRIS-PNPI (1 GeV), ISAC-TRIUMF (0.5 GeV)
- 1b direct reactions in thick target CRC Louvain-la-Neuve, HRIBF Oak Ridge, TRIAC Tokai
- 1c fission in thick target OSIRIS (Studsvik), HRIBF Oak Ridge, TRIAC Tokai, SPIRAL2 (GANIL)
- 2 projectile fragmentation in thick (carbon) target SPIRAL (GANIL), DRIBS (Dubna), EXCYT (LNS Catania)
- 3 fusion-evap. or multinucleon transfer in thin target plus solid catcher GSI-ISOL, UNIRIB (ORNL), DOLIS (Daresbury), LISOL (Leuven), IMP Lanzhou, MASHA (Dubna), SPIRAL2 (GANIL)
- 4 fusion-evap., direct reaction or fission in thin target plus gas catcher (lon Guide ISOL = IGISOL) IGISOL (Jyväskylä), LISOL (Leuven), ...
- 5 liquid helium catcher JYFL Jyväskylä, KVI Groningen

The life cycle of an ISOLDE target

ISOLDE front-ends

Postmortem examination of used targets

Effect of pulsed proton beam

0

New Ta rod

0

Effect of pulsed proton beam

Ta rod after irradiation with ca. 200000 proton pulses (1 Coulomb)

ISOL targets

Target materials:

- 1. molten metals: Ge, Sn, La, Pb, Bi, U,...
- 2. solid metals: Ti, Zr, Nb, Mo, Ta, W, Th,...
- 3. carbides: Al_4C_3 , SiC, VC, ZrC, LaC_x, ThC_x, UC_x,...
- 4. oxides: MgO, AI_2O_3 , CaO, TiO_x, ZrO₂, CeO_x, ThO₂,...
- 5. others: graphite, borides, silicides, sulfides, zeolithes,...

Target dimensions:

target container: 20 cm long, 2 cm diameter

target thickness 2—200 g/cm², 10—100% of bulk density

micro-dimensions of foils, fibers or pressed powder: $1-30 \ \mu m$

U.K. for the ISOLDE Collaboration, Radiochimica Acta 89 (2001) 749.

Diffusion characteristics

Bad diffusion hosts (narrow and/or stiff crystal lattice): Re, diamond, SiC,...

Good diffusion hosts (wide crystal lattice):

Ti, Zr, Hf (fcc metals), Nb, Ta, graphite, polycrystalline oxides (in particular fibers!)

Characteristic diffusion length: $d = (2 n D t)^{1/2}$ n=1 (foil), n=2 (fiber), n=3 (sphere)

Maximize D and minimize diffusion path:

- \Rightarrow thin metal foils (2 μm ... 30 μm)
- \Rightarrow fine powders (µm)
- \Rightarrow thin fibers (some μ m)

Effusion: random walk release

Optimize RIB intensity

All steps of the separation chain need to be optimized!

The first ionization energy of the elements

Ζ

Positive surface ionization source

Surface ionization versus thermal ionization

Ionization potential (eV)

 $\varepsilon_{\rm th} = 1/(1 + g_0/g_+/k \exp((IP - \Phi)/kT))$

Thermal ionization efficiency in realistic ionizer cavity

R. Kirchner, Nucl. Instr. Meth. A292 (1987) 204.

Thermal ionization efficiency in realistic cavity

Watch out for surface contaminations!

Ionization potentials of the elements

1 H		Ionization potential: < 5 eV													2 He		
3 Li	4 Be		lon	izatio	on po	otent	5 B	6 C	7 N	8 0	9 F	10 Ne					
11 Na	12 Mg		lon	izatio	on po	otent		13 <mark>Al</mark>	14 Si	15 P	16 S	17 CI	18 Ar				
19 K	20 <mark>Ca</mark>	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 <mark>Ga</mark>	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 <mark>Cs</mark>	56 Ba	57 <mark>La</mark>	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	111	112						

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Ingredients of a plasma ion source

- Fast electrons:
 - A) Thermionic emission + accelerating field
 - B) RF heating
- Atom confinement: plasma chamber
- Electron "recycling": magnetic field
- Ion extraction system

 $I[A] = A^* T[K]^2 \exp(-\Phi[eV]/kT[K])$

$$A^* = 120 A cm^{-2} K^{-2}$$

$$v_{cyc}[GHz] = 28 B[T]$$

 $r[mm] = 0.35 E_e[eV]^{1/2}/B[T]$

Ionization and neutralization

$$\begin{array}{ll} X^{0}+e^{-}\to X^{+}+2\ e^{-}\,,\ Q=-\ IP_{1}\\ X^{0}+e^{-}\to X^{2+}+3\ e^{-}\,,\ Q=-\ (IP_{1}+IP_{2})\\ X^{0}+e^{-}\to X^{3+}+4\ e^{-}\,,\ Q=-\ (IP_{1}+IP_{2}+IP_{3})\\ X^{+}+e^{-}\to X^{2+}+2\ e^{-}\,,\ Q=-\ IP_{2}\\ \end{array}$$

Electron impact ionization cross-sections

Forced Electron Beam Ion Arc Discharge (FEBIAD)

R. Kirchner, Rev. Sci. Instr. 67 (1996) 928.

ISOLDE "FEBIAD"

2001: 94-99Kr decay studied at ISOLDE

U.C. Bergmann et al., Nucl. Phys. A 714 (2003) 21.

Volatility of the elements

1 H			T (T (o va o va	oor > oor >	0.0	1 mb 1 mb	ar) < ar) <	< 100 < 400	ິ ເ							2 He
3	4		T (o vap	or >	0.0	1 mb	ar) <	: 100	3 0		5	6	7	8	9	10
Li	Ве		T ()	o va	or >	0.0	1 mb	ar) <	< 200	3 0		В	С	Ν	0	F	Ne
11	12		T ()	o vaj	oor >	0.0	1 mb	ar) >	200	3 0		13	14	15	16	17	18
Na	Mg											AI	Si	Ρ	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112						
Fr	Ra	Ac	Rf	Db	Sa	Bh	Hs	Mt									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Electron Cyclotron Resonance Ion Source (ECRIS)

radial plasma confinement by magnetic multipole field

Iongitudinal plasma confinement by magnetic bottle effect (1+ ECRIS) or minimum B configuration (n+ ECRIS)

plasma heating by RF (typically 2.45 – 30 GHz)

good efficiency for light elements (20% He⁺, 50% C⁺, O⁺, Ar⁺, 90% Xe⁺)

R. Geller, Electron Cyclotron Resonance Ion Sources and ECR Plasmas, IOP, Bristol, 1996.

Resonance Ionization Laser Ion Source

Ionization of Cu

The laser system

ISOL versus In-flight separation

- ⁷⁶Ge fragmentation at A1200 fragment separator (MSU)
- Ge detectors (80% and 120%) in close geometry
- 24 h data taking for ⁷³Cu

M. Huhta et al., Phys. Rev. C58 (1998) 3187.

ISOL versus In-flight separation

- ISOLDE: 50 g/cm² UC_x/graphite target plus RILIS
- Ge detectors (75% and 64%) in close geometry
- • 20 min data taking for ⁷³Cu 1559 keV gate Counts Energy (keV) 674 keV gate 150 Sourts

Energy (keV)

Neutron-rich Mn isotopes from UC_x/graphite target

Ge 64 64 s	Ge 65 31 s	Ge 66 2,3 h	Ge 67 18,7 m	Ge 68 270,82 d	Ge 69 39,0 h	Ge 70 21,23	Ge 71 11,43 d	Ge 72 27,66	Ge 73 7,73	Ge 74 35,94	Ge 75 47 s 83 m	Ge 76 7,44
β ⁺ 3.0; 3.3 γ 427; 667, 128	β* 4,6; 5,2 γ 650; 62, 809; 191 βp 1,28	6 6 ⁺ 0.7; 1.1 γ 382; 44; 169; 273	β ⁺ 3.0; 3.2 γ 167; 1473	ε πο β* πο γ	с β ⁺ 1,2 у 1107; 574; 872; 1336	a 3.0	E 00 Y	×0,9	a 15	o 0.14 + 0.28	ly 140 e 8 y (280,) 190	1,53 · 10 ²¹ a. 20 ⁻ # 0.00 + 0,06
Ga 63 31,4 s	Ga 64 2,62 m	Ga 65 15 m	Ga 66 9,4 h	Ga 67 78,3 h	Ga 68 67,63 m	Ga 69 60,108	Ga 70 21,15 m	Ga 71 39,892	Ga 72 14,1 h	Ga 73 4,86 h	Ga 74 9,5 s 8,1 m	Ga 75 2,1 m
β ⁺ = 4,5 γ 637; 627; 193; 650	β ⁺ 2,9; 6,1 γ 992: 808; 3366; 1387; 2195	β ⁺ 2, 1; 2,2 γ 115; 61; 153; 752	β ⁺ 4,2 γ 1039; 2752; 834; 2190; 4296	ε no β" γ93; 185; 300	β [≭] 1,9 γ 1077; (1833)	r 1.68	β ⁼ 1.7 ε γ (1040; 176)	94.7	8 1.0; 3.2 7 834; 2202; 630; 2508	β 1.2; 1.5. γ 297; 53, 326 e ⁻	β 2.6 4.9. • 558 β 7 606	β ⁺⁻ 3,3 γ253; 575 9
Zn 62 9,13 h	Zn 63 38,1 m	Zn 64 48,6	Zn 65 244,3 d	Zn 66 27,9	Zn 67 4,1	Zn 68 18,8	Zn 69 13,8 h 56 m	Zn 70 0,6	Zn 71 3,9h 2,4m	Zn 72 46,5 h	Zn 73	Zn 74 96 s
$\substack{\substack{c\\ \beta^{+} \ 0,7\\ \gamma 41; \ 597; \ 548;\\ 508}}$	β. ⁺ .2,3 γ670; 962; 1412	#0.77	6; β ⁺ 0,3 γ 1115 σ 66	o 1.0	w 6.9	o 0,072 + 0,8	hr 439 β	or 0,0061 + 0.083	9 1,8 2,5 β ⁺⁺ 2,8 1 388: γ 512, 487: 910; 620 390	β ⁺⁻ 0,3. 	b) 136 β ⁺¹ 4,0 b) 136 9,1218 b) 137 941 y 420 406	β 2,1; 2,3 γ 49; 144; 193 m; g
Cu 61, 3,4 h	Cu 62 9,74 m	Cu 63 69,17	Cu 64 12,700 h	Cu 65 30,83	Cu 66 5,1 m	Cu 67 61,9 h	Cu 68 3,8 m 30 s	Cu 69 3,0 m	Cu 70	Cu 71 19,5 s	Cu 72 6,6 s	Cu 73 3,9 s
β ⁺ 1,2. γ 283, 656, 67, 1186	β*2.9 γ(1173)	or 4,5	κ; β ⁼ 0,6 β ⁺ 0,7 γ (1346) σ - 270	α2,17	β 2,6, γ 1039; (834) σ 140	β 0,4; 0,6 γ 185; 93; 91	P 525. S 3.5 85 111 5 3.5 β 57 4.6 1.9 γ 1077; γ 1077 1281	β 2.5 	9-33 45. 1-886: 97-52; 962: 52 1252	β ⁺⁻ > 490; 595; 587 g; m	β γ 652; 1005; 1658; 847	β γ 450; 199; 502; 307
Ni 60 26,223	Ni 61 1,140	Ni 62 3,634	Ni 63 100 a	Ni 64 0,926	Ni 65 2,52 h	Ni 66 54,6 h	Ni 67 21 s	Ni 68 29 s	Ni 69 11,4 s	Ni 70 6,0 s	Ni 71 2,56 s	Ni 72 1,57 s
ur 2,9	a25	or 15	β 0,07 πογ σ 24	σ1.5 p	β 2,1 γ 1462, 1115, 366 σ 22	β [~] 0,2 πογ	β 3.8 γ (1937; 1115; 822)	в у 758; 84 9	β γ 1871; 680; 1213; 1463	β γ 1036; 78	β γ534; 2016	β γ 376; 94
Co 59 100	Co 60	Co 61 1,65 h	Co 62 14,0 m 1,5 m	Co 63 27,5 s	Co 64 0,3 s	Co 65 1,14 s	Co 66 0,23 s	Co 67 0,42 s	Co 68 0,18 s	Co 69 0,27 s	Co 70 0,15 s	Co 71 0,21 s
v 20,7 + 16,5	Iγ 50 p 0.1 e ⁻ 1.5 1.5 β ⁻ γ 1302; s (1332) 1172 1172 e 58 v 2.0 1172	β [−] 1,2 γ 67; 909	β ⁺ 2.9 y 1170, 1160, 2500, 1129, 1129,	β 3.6 γ87: 982	β [−] 7,0 γ 1346; 931	вт 6,0 у 1142; 311; 964	8 7.0 y 1425; 1246; 471	β [~] 6.6 γ 694	β	β-	B T	8-
Fe 58 0.28	Fe 59 44,503 d	Fe 60 1,5 · 10° a	Fe 61 6,0 m	Fe 62 68 s	Fe 63 6,1 s	Fe 64 2,0 s	Fe 65 0,45 s	Fe 66 0,44 s	Fe 67 0,47 s	Fe 68 0,1 s	Fe 69 0,17 s	NEW WE
æ1,3	β 0,5; 1,6 γ 1099; 1292 σ < 10	в 0,1	β 2.6; 2.8 γ 1205; 1027; 298	β ^{-2,5} γ506	β ^{**} 6,7 γ 905; 1427; 1299	β" 7 311	8-	B	8-	87	6-	44
Mn 57 1,5 m	Mn 58	Mn 59 4,6 s	Mn 60	Mn 61 0,71 s	Mn 62 0,88 s	Mn 63 0,25 s	Mn 64 0,14 s	Mn 65 0,11 s	Mn 66 0,09 s	Mn 67	Mn 68	Mn 69
β ⁺ 2.6 γ 14: 122: 692	μ 3.9 γ.811. μ 8.1. 1523. γ.1447; 1γ.72, σ 2433.	β ^{**} 4.4; 4.8 γ 726; 473; 571	β ⁺ 5.7, 9,1 γ 524, 1969, β ⁺ η 272, πα.γ	623 ms β ⁻ 6.4 γ629: 207	671 ms 9" 9877, 942; 1299; 1815.	275 ms β ⁺ > 3.7 γ 356	89 ms	88 ms	66 ms	42 ms	28 ms	14 ms

M. Hannawald et al., Phys. Rev. Lett. 82 (1999) 1391.

⁶⁷Cu for nuclear solid state physics

+

+

+

- Lattice location of Cu in Si studied by emission channeling
- 5 samples with each 5 min implantation of ⁶⁷Cu (ca. 100 ppm doping)

U. Wahl et al., Phys. Rev. Lett. 84 (2000) 1495.

RILIS Laser setup

Elements ionized with CVL pumped dye lasers

	elements ionized with ISOLDE RILIS																
1 H		tested ionization scheme												2 He			
3	4 <u>5</u> 678												0	10			
Li	Ве	B C N O													F	Ne	
11	12	12												15	16	17	18
Na	Mg	g												Ρ	S	CI	Ar
<mark>19</mark>	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
<mark>55</mark>	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112						
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Isomer separation

U.K. et al., Hyperfine Interactions 127 (2000) 417.

Mass measurements with Penning traps

Resonance frequency measurement via TOF method

M. König et al., Int. J. Mass Spectr. Ion Proc. 142 (1995) 95.

Mass measurements with ISOLTRAP

Solving the ⁷⁰Cu mass puzzle

J. Van Roosbroeck et al., Phys. Rev. Lett. 92 (2004) 112501.

CERN accelerator structure **CERN-PS Booster Synchrotrons** CMS $E_{p} = 1.4 \text{ GeV}$ LHC **3•10**¹³ protons/pulse = 5 μ C COMPASS $I_{average} = 4 \mu A$ p_{average} = 6 kW SPS LHC-b ALICE ATLAS LHC: Large Hadron Collider West Area - neutrinos SPS: Super Proton Synchrotron AD: Antiproton Decelerator CNG ISOLDE: Isotope Separator OnLine DEvice East Area PSB: Proton Synchrotron Booster PS: Proton Synchrotron PSB LINAC: LINear ACcelerator PS LEIR: Low Energy Ion Ring CNGS: Cern Neutrinos to Gran Sasso protons antiprotons Pb ions neutrinos to Gran Sasso (I) Gran Sasso (I) 730 km

Antiproton traps at CERN

G. Gabrielse et al., Phys. Rev. Lett. 100 (2008) 113001.
M. Amoretti et al., Phys. Lett. B 583 (2004) 59.
D. Brown, R. Howard et al., "Angels and Demons" (2009).
Measurement of magnetic moments

Nuclear properties from laser spectroscopy

Hyperfine splitting in electronic transitions:

$$\Delta E_{HFS} = \frac{A}{2} * K + \frac{B}{4} * \frac{\frac{3}{2}K(K+1) - 2I(I+1)J(J+1)}{I(2I-1)J(2J-1)}$$
$$K = \frac{F(F+1) - J(J+1) - I(I+1)}{J(J+1)(2l+1)}$$

$$A = \frac{\mu \cdot H_e(0)}{IJ} \implies \text{magnetic dipole moment} \qquad \mu \quad (J > 0)$$
$$B = \frac{eQ_s}{\frac{d\Phi}{dr}(0)} \implies \text{electric quadrupole moment} \quad \mathbf{Q} \quad (J > 1/2)$$

Isotope shift between two nuclei:

$$\delta v_{IS}^{A,A'} = (K_{NMS} + K_{SMS}) * \frac{M_{A'} - M_{A}}{M_{A'}M_{A}} + F_{el.} * \delta \langle r^2 \rangle^{A'A}$$

 \Rightarrow nuclear charge radii

O(r²)AA

Atomic vapor laser isotope separation (AVLIS)

large scale application of resonant laser ionization!

Surface ionized background

1 H			lon	izatio	on do	otent							2 He				
3 Li	4 Be		lon	izatio	on po	otent	ial: 5	5.0 -	5.8 6	eγ		5 B	6 C	7 N	8 0	9 F	10 Ne
11 <mark>Na</mark>	12 Mg		lon	izatio	on po	otent		13 <mark>Al</mark>	14 Si	15 P	16 S	17 CI	18 Ar				
19 <mark>K</mark>	20 <mark>Ca</mark>	21 Sc	21 22 23 24 25 26 27 28 29 3 c Ti V Cr Mn Fe Co Ni Cu Zn											33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 <mark>Cs</mark>	56 Ba	57 La	57 72 73 74 75 76 77 78 79 Hf Ta W Re Os Ir Pt Au F										82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	112									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

ISOLDE beams around N=50

Sr 78 2,65 m	Sr 79 2,3 m	Sr 80 1,8 h	Sr 81 22.2 m	Sr 82 25,34 d	Sr 83 5.0 s 32,4 h	Sr 84 0,56	Sr 85 67,7 m 64,9 d	Sr 86 9,86	Sr 87	Sr 88 82,58	Sr 89 50,5 d	Sr 90 28.64 a	Sr 91 9,5 h	Sr 92 2,71 h
p" (104):243; 268, 212	β ⁺ 4,2 v 39; 106; έ19	, γ.689, 175, 563	B* 2,7; 3,0 9154, 148, 443, 188, 9	no pt no y o	1/12. 1/738 301 4/8	in0,5 - 0,2	1978 - no.4* 0.5*** - no.4* 14.001 - 1001 -	≠0,81 + 0,20	h 180 4	vr.0.0068	γ(909) 9 7 0,42	р 0,0 00 у 9 0 0,014	γ 1024, 750, 653. m. g	∯‴ 0,8: 1,9… у 1364
Rb 77 3,9 m	Rb 78	Rb 79 23,0 m	Rb 80 30 5	Rb 81 203m 458h	Rb 82 6,81 1,27 m	Rb 83 86,2 d	Rb 84	Rb 85 72,165	Rb 86	Rb 87 27,835	Rb 88 17.8 m	Rb 89 15,2 m	Rb 90	Rb 91 58 s
6* 3.9. 7 67, 179, 394, 150		β ⁷ 1.8; 2.5 γ668, 160, 143, 130, 556 g. m	β ^{\$} 4.7 7616	0 ¹⁰ 8 ⁴ 14 - 4 ⁴ 1 ⁴ 80 - 1 4 ⁴ 80 - 1 4 ⁴ 80 - 1	170,4. 1776: 164 6 ¹ 2,5. 119. 1776.	+: FG p ⁺ +520; 530; 563 	12 342 211 312 312 312 312 312 312 312 312 31	F0,08 + 0,45	11-540	4,0 10 a 17 0.3 10 1.0 0 1.0 0 1.0	р ^т 5.3. ү 1836 898 о 1.2	рт 1.3; 4,5 у 1032, 1248; 2196	1800 1802 001 1001 3017 4000 5-107_1* 4130_	₩ 5,6 × 94, 2584, 3800, 346
Kr 76 14,6 h	Kr 77 1,24 h	Kr 78 0,35	Kr 79	Kr 80 2,25	Kr 81	Kr 82 11,6	Kr 83	Kr 84 57.0	Kr 85 4,48 h 10,76 a	Kr 86 17,3	Kr 87 76,3 m	Kr 88 2,84 h	Kr 89 3,18 m	Kr 90 32,3 s
7 330; 270; 45; 407.	8 ⁴ 1.9 	+0.17+6	1,1 2.4 1,201. 14,180. 008.0	σ 4.8 + 7	h 100 + 100)	ir 14-47	27- Hita	a 0,09 + 0.02	17 AL - 47 97 (AL - 1984) 17 Mil - 1984 17 Mil - 1984	of 0.009	y403;2655 845. € 600	v 2082: 198, 2196, 835, 1530	JF 3.5: 4.9 v221; 988 1473: 904	9 1198 122 540 9 m
Br 75 1,6 h	Br 76	Br 77	Br 78 6,46 m	Br 79	Br 80 4,42 1 17.5 m	Br 81 49,31	Br 82 4,1 m 35,34 h	Br 83 2,40 h	Br 84 6.0 m 31.8 m	Br 85 2,87 m	Br 86 55,1 s	Br 87 55,7 s	Br 88 16,3 s	Br 89 4,40 s
B ⁺ 1.7 + 287, 141	17 45. 1857. 17 45. 1857. 1857. 1857.	17 105	8+2.6 y614	1420 132-	h 37- 1894	ar 2,4 + 0,24	5,900 67 17 17 17 17 17 17 17 17 17 17 17 17 17	μ 0,9 γ 530; 520 m	17.12 1484 17.45 1882 1984	рт 2.5. үзэх: 925	β 3.3; 7.6. γ 1565; 2751	9 0,8 +1420; 1478; 1678; 532; 2006 \$4 0,02; 0,05	p 4,4, 6,9 9,775, 802 1445 10	6 8,1 9 1069; 775* 10
the second se	the second se		the second se			The rest of the local day is a local day of the local day is a local day of the local day of the local day is a local day of the local day of			the second se	and the second se		and the second se	And the second sec	

⁸¹Rb background is 150000 times more abundant than ⁸¹Zn!

As 73 80,3 d	As 74 17,77 d	As 75 100	As 76 26,4 h	As 77 38,8 h	As 78 1,5 h	As 79 8,2 m	As 80 15,2 s	As 81 34 s	As 82	As 83 13,3 s	As 84 4,5 s	As 85 2,03 s	As 86 0,9 s	As 87 0,73 s
πο β* γ 53 6*	φ+ 0.0; 1.5 π- 1.4 γ.596; 636	+4.3	F ⁺ 3.0 √559:857, 1216.	9 ^{+10,7} 5239,521 250 9	β 4,4 V614: 685 1309.	6 2,1 795, 385; 432, 879 m	β ⁺⁻ 5.4 600; 1646; 1207	p** 3,8 9 408, 491 9		813.4 7736.1113 #1.0	8 [−] 5.7. ~1455:067 8⊓	в вл 9:50; 0,52 у 1150; 5455; 1444	6 ⁻ y704 j00	e ⁻ gn
Ge 72 27,66	Ge 73 7,73	Ge 74 35,94	Ge 75 47s 81m	Ge 76 7,44	Ge 77	Ge 78 88 m	Ge 79	Ge 80 29,5 s	Go 81 765 768	Ge 82 4,60 s	Ge 83 1,85 s	Ge 84 984 ms	Ge 85 535 ms	Ge 86
	o 16	WQ14+020	1/1942 6°	1,53 - 10* a	17723 - 17258 17216 - 231 17216 - 230 1730 - 430	μ ^{**} 9.7. γ277; 294	40 1201; 111-0,1 542; 1110; 1,119; 1159;	β ⁺ 2.4 > 206; 1064; 937	177 A.S. A ⁺ 5.D. 1.90 5.2 5.92 7.509 197 7.21	8 3.6; 3,9 y 1092, 843, 9	8 9,307; 1194; 1526	в ⁻ у 242; 100 Пл	6 6n v 102	
Ga 71 39.892	Ga 72 14,1 h	Ga 73 4,86 h	Ga 74	Ga 75 2,1 m	Ga 76 32,6 s	Ga 77 13 s	Ga 78 5.49 s	Ga 79 2,85 s	Ga 80 1,70 s	Ga 81 1,22 s	Ga 82 0,60 s	Ga 83 0.31 s	Ga 84 85 ms	1,327
n44	0 ⁻¹ ,0 3.2. 1834:2202 690:2500	6 ⁻ 1,2; 1,5. 7297; 53; 326	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	β* 3.3 γ253 575 g	β* 5.9 9 563: 548: 1 108	# 5.2. - 469; 459 m	β ⁺⁻ 5,1; 7,5 7,619; 1186; 567;	v 465: 515 1187; 2140 g; Bn	γ 660, 1083; 1109 βri	y 216; 828; 7/1 g m (In	μ • 1348; 2215; 711' 8π	β" βο γ1348"	8- 00	54
Zn 70 0.6	Zn 71	Zn 72 46,5 h	Zn 73	Zn 74 96 s	Zn 75 10,2 s	Zn 76 5,6 s	Zn 77	Zn 78 1,47 s	Zn 79 995 ms	Zn 80 537 ms	Zn 81 0,29 s	0,3239	0,5490	1,005
	17 1/3 175 17 2.18 182 1932 182 1933	8=0.3 9.146: 182 9	5/195 5743 1/208 1/208 1/1 1/208	6 2.1; 2.3 y 49; 144; 183 m; g	β ⁺⁺ 6,5,5,9 + 229:432: 156:606	р ^{т.} 4.0 5 1997 76 966, 172	1.11 1.11 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	B [™] 5.1 > 225, 182 060, 635; 454	0.702;5866; 674;979 60	p 55,63 v713;715; 955,555 Bn	an Bn	52		
Cu 69 3,0 m	Cu 70	Cu 71 19,5 s	Cu 72 6.6 s	Cu 73 3,9 s	Cu 74 1,59 s	Cu 75 1,22 s	Cu 76	Cu 77 469 ms	Cu 78 342 ms	Cu 79 188 ms	Cu 80	0,1974	2	1.82
P [™] 2,5 → 1007; 834; 601 9	43 1605 5743 188, 92 188, 198	β 1490 595: 687 5; m	8 γ 652; 1005; 1668; 847	0 y 450; 199; 502; 907	9 7606; 1064; 1139: 813 3n ?	p= +185(-424) 724 80	F. 120-154	ur Bn	ar an	g- an		4		
Ni 68 29 s	Ni 69 11,4 s	Ni 70 6,0 s	Ni 71 2,56 s	Ni 72 1,57 s	Ni 73 0,84 s	Ni 74 0,9 s	Ni 75 0,6 s	Ni 76 ~ 0,24 s	NI 77	Ni 78	0,04712	0,1269		
57 9758; 84 9	p 171871: 680. 1213: 1483	10 7 1036; 78	₩- \$634; 2016	β- γ 378, 84	рт 1 165, 1010	8** 7 156*: 694 8n	15-	15 ⁻¹						

Rubidium cross-sections

better use neutron-induced fission!

Neutron "converter" geometry

Ga & Rb suppression with the "neutron converter"

proton beam on target

proton beam on converter

U.K., Eur. Phys. J. A15 (2002) 255. U.K. et al., AIP Conf. Proc. 798 (2005) 315.

ISOLDE thermochromatography set-up

50. ---

Zn/Rb discrimination on quartz surface!

Combination of neutron converter and quartz transfer line provides ⁸¹Zn/⁸¹Rb selectivity gain of 100000!

U.K. et al., Nucl. Instr. Meth. B266 (2008) 4229.

E. Boucquerel et al., Nucl. Instr. Meth. B266 (2008) 4298.

Experimental access to r-process nuclides

The landscape of possible nuclei

Elements ionizable with CVL pumped dye lasers

			elen	nents	ioniz	zed v	vith IS	SOL	DE R	ILIS							
1			1001		•:												2 4
п			teste		nzau	on so	cnem	e									пе
3	4											5	6	7	8	9	10
Li	Ве		poss	sible	<u>ioniz</u>	ation	sche	eme	(unte	sted)		Β	С	Ν	0	F	Ne
11	12		refractory elements 13 14 15 16 17														18
Na	Mg		AI SI P S CI														
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	L	Хе
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
87	<mark>88</mark>	<mark>89</mark>	104	105	106	107	108	109	110	111	112						
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Hf beams at ISOLDE

Ta/W foil target + MK5 + CF₄

U.K. et al., Eur. Phys. J. Spec. Topics 150 (2007) 293.

Neutron-rich hafnium beams

Overview of molecular ISOL beams

		Sepa	aratio	n as)	<mark>(F⁺, X</mark>	CI ⁺		Sepa	aratio	n as)	(O _x +	Separation as XCO ⁺					
1 H		_	Sepa	<mark>aratio</mark>	<mark>n as)</mark>	<mark>(F₂⁺</mark>		Sepa	aratio	n as)	(S ⁺		Sepa	aratio	n as A		2 He
3 Li	4 Be		Sepa	aratio	n as)	(F ₃ +		Sepa	aratio	n as F	IX ⁺	5 <mark>B</mark>	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg		Sepa	aratio	n as)	(F ₄ +		Sepa	aratio	n as N	IX+	13 Al	14 Si	15 P	16 <mark>S</mark>	17 <mark>CI</mark>	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 <mark>Sr</mark>	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	111	112	112	112	112			

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

U.K. et al., Nucl. Instr. Meth. B266 (2008) 4229.

General Purpose Separator (GPS)

Francium beams

Francium

	_																
1 H																	2 He
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
11 No	12 Ma											13	14 Si	15 D	16 S	17 CI	18 A r
110	IVIY	24	22	22	24	25	20	07	20	20	20	AI 24	20	Г 22	3	01	
K 19	²⁰ Ca	21 Sc	ZZ Ti	23 V	Z4 Cr	∠ع Mn	∠₀ Fe	2/ Co	28 Ni	29 Cu	30 Zn	Ga	Ge ³²	33 As	³⁴ Se	ى Br	36 Kr
37	38	39	40	- 41	42	43	44	45	46	47		49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112						
Fr	Ra			r		n.p.	b	.p.		Ρ		٦					
				(pm) ((°C)	(9	C)	(e\	/)						•	
		Cs		265.	4 2	28.5	6	71	3.	89		68 r	69 Tm	70 Yb	71 Lu		
		Fr		270		27	6	77	4.	07		100	101	102	103		
		Ih	Ра	U	Νр	Pu	Am	Cm	ВК	Ct	ES	Fm	Md	No	Lr		

Positive surface ionization source

Francium beam intensities

Mass separation

Mass separation

General Purpose Separator (GPS)

Mass separation

Mass separation

High Resolution Separator (HRS)

Mass separation

A=200 alpha energy spectrum

Beam transport

electrostatic beam transport is mass-independent (E=60 keV), but has space charge limit for high beam intensities (>10 μ A) \Rightarrow high current beams need magnetic beam transport

Applications

M. de Saint Simon et al., Phys. Scr. T59 (1995) 406.
Mass measurement of $^{11}Li(T_{1/2} = 9 ms)$

Fig. 2. Example of accumulated transmission peak for ¹¹Li. The center position (299 265 kHz) corresponds to the 917th harmonic of the cyclotron frequency. With a *RF* power of 100 W, a mass resolving power of $\frac{\Delta M}{M} \sim 57\,000$ was achieved.

C. Bachelet et al., Phys. Rev. Lett. 100 (2008) 182501.

Retardation spectrometer

- electrostatic energy measurement
- charged particles move against electrostatic potential; transmission measured as function of repulsive potential
- analyzes only the energy component perpendicular to the analyzer
- total energy measurement requires perfectly parallel beam

Examples of MAC-E retardation spectrometer

- 1. WITCH at ISOLDE: weak interaction studies via recoil detection after EC/ β^+ decay
- 2. ASPECT at ILL: precision spectroscopy of angular correlation between neutron spin and decay protons
- 3. KATRIN in Karlsruhe: precision measurement of beta endpoint in tritium decay for neutrino mass determination

ß-decay and neutrino mass

model independent neutrino mass from ß-decay kinematics

$$\frac{\mathrm{d}\Gamma_i}{\mathrm{d}E} = C p \left(E + m_e\right) \left(E_0 - E\right) \sqrt{\left(E_0 - E\right)^2 - m_i^2} F(E) \theta \left(E_0 - E - m_i\right)$$

$$C = G_F^2 \frac{m_e^5}{2 \, \pi^3} \, \cos^2 \theta_C \, |M|^2$$

experimental observable is m_v^2

ß-source requirements :

- high ß-decay rate (short t_{1/2})
- low ß-endpoint energy E₀
- superallowed ß-transition
- few inelastic scatters of ß's

ß-detection requirements :

- high resolution ($\Delta E < few eV$)
- large solid angle ($\Delta\Omega \sim 2\pi$)
- low background

Electrostatic filter with Magnetic Adiabatic Collimation

MAC-E-Technique adiabatic guiding of ß-particles along the magnetic field lines

inhomogen. B-Feld: stray field of 2 superconducting magnets

B_{max} = 3 - 6 T

 $B_{min} < 1 mT$

very large solid angle !

 $\Delta \Omega \sim 2 \pi$

 $\vec{F} = (\vec{\mu} \cdot \vec{\nabla}) \vec{B} + q \vec{E}$ $\mu = E_{\perp} / B = const$

A. Picard et al., Nucl. Instr. Meth. B63 (1992) 345.

KATRIN experiment

Karlsruhe Tritium Neutrino

at Forschungszentrum Karlsruhe unique facility for closed T_2 cycle: **Tritium Laboratory Karlsruhe**

detector

< 1E-20 mbar ³H

main spectrometer – design

Applications

Production of ¹²C in stars

		C 8	C 9	C 10	C 11	C 12	C 13	C 14
		2E-21 s	127 ms	19.3 s	20 m			5.7 ka
		B 7	B 8	B 9	B 10	B 11	B 12	B 13
		4E-24 s	770 ms	8E-19 s			20 ms	17 ms
		Be 6	Be 7	Be 🖇	Be 9	Be 10	Be 11	Be 12
		5E-21 s	53.3 d	7 <mark>6-</mark> 17 s		1.5 Ma	13.8 s	21 ms
		Li 5	Li 🦻	Li 7	Li 8	Li 9	Li 10	Li 11
		4E-22 s			840 ms	178 ms	2E-21 s	8.5 ms
	He 3	He 🦉	He 5	He 6	He 7	He 8	He 9	He 10
			7E-22 s	807 ms	3E-21 s	119 ms	7E-21 s	3E-21 s
H 1	H 2	H 3						
		12.3 a						

The triple-alpha process: rate

The triple-alpha process

Setup for study of three-body-fusion?

Exercise:

scale from twobody fusion d+t to three-body fusion ⁴He+⁴He+⁴He!

14 m

cost ca. 10¹⁰ EUR

Setup for study of triple alpha reaction!

New detector design

Inverse reaction: ¹²**B(** β ,3 α **) decay**

¹²C* from the beta-decays of ¹²N and ¹²B

 β -delayed α -spectrum measured:

- 1950 by Alvarez
- •1957 by Fowler et al.
- •1963 by Wilkinson et al.
- 1966 by Schwalm and Povh
 1978 by Schwalm and Gergely (unpublished)

¹²B/¹²N

12N

¹²B/¹²N

How to measure beta-delayed particle emission?

¹²Be(β ⁻)¹²B beta decay to ¹²C^{*} \rightarrow 2 α detected

The triple-alpha process: ¹²B and ¹²N decays

H.O.U. Fynbo et al., Nature 433 (2005) 136.

New rates for the triple-alpha process

^{7,10}Be from Paul Scherrer Institute

PSI: 2 mA 590 MeV protons onto graphite target for pion production

Spallation products

6	С					C 9	C 10	C 11	C 12	C 13	C 14
						127 ms	19.3 s	20 m			5.7 ka
5	В					B 8		3 10	B 11	B 12	B 13
						770 mş				20 ms	17 ms
4	Be					Be 7		Be 9	Be 10	Be 11	Be 12
						53.3 d			1.5 Ma	13.8 s	21 ms
3	Li					Li 6	Li 7	Li 8	Li 9		Li 11
								840 ms	178 ms		8.5 ms
2	He			He 3	He 4		He 6		He 8		
		_					807 ms		119 ms		
1	н		H 1	H 2	Н 3						
					12.3 a						
Ζ		_				-					
		Ν	0	1	2	3	4	5	6	7	8

Procedure for off-line produced 7Be beams

- **1. Break graphite into pieces**
- 2. Fill ISOLDE target container
- 3. Put into Pb-shielded container
- 4. Transport to ISOLDE
- 5. Heat target container to 1700 ℃
- 6. Ionize Be with RILIS

RIB with "macroscopic" intensity!

U.K. et al., Nucl. Instr. Meth. B204 (2003) 343.

My Computer

Ð

Network Veighborhood

01

Recycle Bir

8

Connect to

Mail Server

....

solde Control System

**

nucleus

×

Ove's files

<

Phone bool

Measurement of ⁷Be(p,γ) with ion-implanted target

L.T. Baby et al., Phys. Rev. Lett. 90 (2003) 022501 & 92 (2004) 029901.

Measurement of ⁷Be(p,γ) with ion-implanted target

L.T. Baby et al., Phys. Rev. Lett. 90 (2003) 022501 & 92 (2004) 029901.

High sensitivity wear measurements

M. Hoffmann et al., Nucl. Instr. Meth. B183 (2001) 419.

P. Fehsenfeld et al., Nucl. Phys. A701 (2002) 235c.

⁷Be for wear analysis

Material	Density	Wear rate	Implant	. depth i	n μ <mark>m at b</mark>	eam en	ergy of:
	g/cm3	μ m/10⁶ cyc.	60 keV	260 keV	1.2 MeV	6 MeV	15 MeV
UHMWPE	0.97	50	0.36	1.1	2.9	13	43
Ti	4.52		0.17	0.56	1.5	6.1	18
CoCrMo	8.28		0.11	0.39	1.1	4.1	12
Alumina	3.1	0.15	0.20	0.59	1.6	6.7	21
Zirconia	5.5		0.15	0.48	1.3	5.3	16

In-vivo use: Simulator runs: $\approx 10^{6}$ cycles/year (2-10)•10⁶ cycles

Required dose:

some pnA per cm^2 (e.g. ball of 22-28 mm diameter)

Cancer

About 1 000 000

new cancer cases per year in EU (15) 58 % local disease, 42 % generalized

- 45 % cured (5 year survival)
 - 22 % surgery alone
 - 12 % radiation therapy
 - 6% combination surgery + radiation
 - 5% chemo-therapy

just beginning of systemic radionuclide therapy

HOW:

expose cancer cells or cancer tissue to sufficient radiation doses?

Radioisotopes in therapy = surgery with radiation

	Gamma			Auger	
	Knife	ß-Knife	α -Knife	Knife	
lsotope	⁶⁰ Co	¹³¹ Ι, ⁹⁰ Υ, ¹⁵³ Sm, ¹⁶⁶ Ho, Others	^{212, 213} Bi, ²¹¹ At, ¹⁴⁹ Tb, ^{223, 224} Ra	125 ¹⁶⁵ Er	
	$E_{\gamma} > 1 \text{ MeV}$	$E_{\beta} 1 - 3 \text{ MeV}$	E_{α} 4–8 MeV	E _e few eV	
Range	Full body penetration	about 1 cm	30 – 80 µm	1 µm	
Application	Brain cancer	RIT Radio- immuno therapy	Leukemia, Iymphoma	future	
	Tissue surgery ex vivo	Tissue surgery in vivo	Cell surgery	Molecular surgery	

Cancer therapy with alpha emitters

- half-life
- radiotoxicity of daughter isotopes
- biokinetics: in-vivo stability of chelating agent, clearance,...
- affordable
- reliable supply: more than one facility per geographic area

Isotopes for targeted alpha therapy

12 s	Ac 213 0.80 s	Ac 214 8.2 s	Ac 215 0.17 s	Ac 216 0.44 ms	Ac 217 0.74 µa 69 mi	Ac 218 1.1 μs	Ac 219 11.8 μs	Ac 220 26 ms	Ac 221 52 ms	Ac 222	Ac 223 2.10 m	Ac 224 2.9 h	Ac 225 10.0 d	Ac 226 29 h
	u 7.36	a 7.215; 7.061 t 7 135; 244	n 7.600; 7.211 e y (386)	α 9.029; 9.105 γ 83: 854; 771	1y-660; 486; 382 a 10.54 a 0.65	α 9.205 g	n 8.964	a: 7.85; 7.81; 7.68 7 134	α 7.65; 7.44, 7.38	6.75; 6.29; a 7,009; 7.00; m, 6.253 15 7; r, g	α 6.647; 6.662; 6.564; e γ (99; 191;84)	e 9 6.142, 6 060, 6 214 216, 132	a 5.690; 5.793; 5.732; C 14 7 100; (150; 193: 63; 1 a	+ 230, 158 + 230, 158 254; 100
11	Ra 212 13.0 s	Ra 213 21 ms 274 m	Ra 214 2.46 s	Ra 215 1.67 ms	Ra 216 20 m 0.18 µs	Ra 217 1.6 µs	Ra 218 25.6 µs	Ra 219 10 ms	Ra 220 23 ms	Ra 221 28 s	Ra 222 38 s	Ra 223 11.43 d	Ra 224 3.66 d	Ra 225 14.8 d
.788	n 5.899 • 7 • (635)	5546. 0.5434 1053; 6.731; 161;e ^r 6.521. 0.8.486: e.y.1111 8.357. 218e ^r	n 7.137; 6.505 e; g y (642)	α 8.700; 7.879 γ 834; 540	17 628: 476, 344, + 9.651; 11.028,	a 8.99	α 8.39 g	= 7.679; 7.998 7 318; 214; 592	α 7.48 γ 465	a 6.613; 6.761; 6.668 7 149; 93; 174 C 14	a 6.559; 6.237 7 324; (329; 473) C 14	α.5.7182; 5.6067, γ.569; 154; 324, C 14; α 139; α; <0.7	o 5.6854; 5.4486 7.241; C 14 w 12.0	117.0.9(0.4 7.40 47
10 m	Fr 211 3.10 m	Fr 212 20.0 m	Fr 213 34.6 s	Fr 214	Fr 215 0.09 μs	Fr 216 0.70 µs	Fr 217 16 µs	Fr 218	Fr 219 21 ms	Fr 220 27.4 s	Fr 221 4.9 m	Fr 222 14.2 m	Fr 223 21.8 m	Fr 224 3.3 m
K.	n 6.535 540, 918, 281	6 438 6.340 1 1274 227 1165	u 6.775 e	u 8.477; e 8.428; 8.547 8.538	it 9.36	e 9.01 9	a 8.315	u 7,01% 7,600; 7,605; u 7,667; rf;g 7,518; ly g	α 7.312 γ (352; 517)	α 6.68; 6.63; 6.58 β ^{**} γ 45; 106; 162,	u 6.341;6.126 y 218; (101; 411) C 14	β" 1.8 γ 206; 211; 242 α 7	рт 1.1 а 5.94 у 50; 80; 235	β ⁺⁻ 2.8, 2.8 γ 216, 132, 637, 1341
09 m	Rn 210 2.4 h	Rn 211 14.6 h	Rn 212 24 m	Rn 213 19.5 ms	Rn 214	Rn 215 2.3 μs	Rn 216 45 μs	Rn 217 0.54 ms	Rn 218 35 ms	Rn 219 3.96 s	Rn 220 55.6 s	Rn 221 25 m	Rn 222 3.825 d	Rn 223 23.2 m
-	a 6.040 y 458; (671; 649; 73)	5.783: 6.851 7.674: 1363 6780	к 8.264 У	o 8.068; 7.252 y 540	1/ 102 1/ 102 10,53 × 10,46 × 0,007	a 8.67 9	α 8.05 9	α 7.740,	и 7.133 ү (609)	a 6.819; 6.553; 6.425 7 271; 402	α 6.288 γ (550) σ <0.2	β 0.8; 1 1 α 6.037; 5.788; 5.778 γ 196; 150	α 5.49948 γ (510) σ 0.74	μ γ 593; 417; 838; 655
)8 h	At 209 5.4 h	At 210 8.3 h	At 211 7.22 h	At 212	At 213 0.11 µs	At 214 0.76 ya 0.27 ya 0.56 ya	At 215 0.1 ms	At 216 7 0.3 ms	At 217 32.3 ms	At 218 ~2 s	At 219 0.9 m	At 220 3.71 m	At 221 2.3 m	At 222 54 s
ĥ	s a 5.047 y 545: 782: 790	•; = 5.524, 5.442; 5.361 9 1181; 245; 1483	u 5.067 7 (687) g	ы.7.84, а.7.68, 7.90, 7.82 ү83, ү83 и	n 9.08	* 1.712 	α 8.026 γ (405)	o 7.606 m ₁ 7.001,; g y 102 418;	u 7.069 pT 7 (259; 334; 565)	a 6.694; 6.653 P Y	u 6.27 p-	μ ⁻ α 5.483 γ 241; 290; 422	y-	β ^{=±}
07	Po 208 2.898 a	Po 209 102 a	Po 210 138.38 d	Po 211 25.2 s 0.516 s	Po 212	Po 213 4.2 μs	Po 214 164 μs	Po 215 1.78 ms	Po 216 0.15 s	Po 217 1.53 s	Po 218 3.05 m	Po 219 >300 ns	Po 220 >300 ns	
	κ 5.1152 γ (292; 571) 0	4.881 γ (895; 261; 263)	n 5.30438 1 (803); a <0.0005 + <0.030; a _{k.0} 0.002; a ₁ <0.1	e.7.275; 8.850_ y.570; +7.450_ 1004, y.0008; he 570_1	11.66	a 8.376	n 7.6869	o 7.3862 a ⁺ y (438)	n 6.7783 v (805)	o 6543 β⁺	o 6.0024 β* 7	β ⁻ ? α.?	p-2	
06 d	Bi 207 31.55 a	Bi 208 3.68 · 10" a	Bi 209 100	Bi 210	Bi 211 2.17 m	Bi 212	Bi 213 45.59 m	Bi 214 19.9 m	Bi 215	Bi 216	Bi 217 98.5 s	Bi 218 33 s		
; 510;	1770, 1064; 1770	к ү 2615	ir 0.011 + 0.023 ma_ii <3E-7	a-4.048; #**1.0 4.856 y 204; 4.666 204; y 600; # 0.004 200;	α 6.6229 6.278 β [™] γ 351 μ → g; β [™] → g	430	67 1.4 0.5.87 9.440; (293; 1100, 1	6 ¹⁷ 1.6, 3.3 o. 5.450, 5.510 7 009, 1754, 1120 (ho 9.079	National States	6 ¹¹ 7 550: 7 550: 419 801.	μ γ265; 254; 800; 436	β* 3.6; 3.7 7510; 366; 426; 263	136	
05 07 a	Pb 206 24.1	Pb 207 22.1	Pb 208 52.4	Pb 209 3.253 h	Pb 210 22.3 a	Pb 211 36.1 m	Pb 212 10.64 h	Pb 213 10.2 m	Pb 214 26.8 m		121213			
	₩0.02 7	w 0.61	ur0.00023 un, a ≪8€-6	87 0.6 10 Y	p=0.02; 0.06 + 47; 0=10 - 0.372 + <0.5	8 ¹⁷ 1.4. y 405; 632; 427	#* 0.3; 0.6 7239; 300 9	B*	#* 0.7; 1.8 ∑352; 295; 242		134			
)4 a	TI 205 70.48	TI 206 3.7 m 4.29 m	TI 207	TI 208 3.053 m	TI 209 2.16 m	TI 210 1.30 m	TI 211 >300 ns	TI 212 >300 ns						
	≈0.11	17 000, 463 210, 290, p* 14, 1121, y(803, 1	Hy 1000, 114 391 11588	87 1.8; 2.4. y 2615; 583; 511; 860; 277	µ= 1.8 1567; 465; 117	9 1.9; 2.3 v 800; 298 In	g= 2	87.7	132					

¹⁴⁹Tb for targeted alpha therapy

Er 148 4.5 s	Er 149	Er 150 16.5 s	Er 161	Er 152 10.3 a	Er 153 37.1 a	Er 154 3.73 m	Er 165 5.3 m	Er 156 18.6 m	Er 157 18:65 m	Er 158 2.257	Er 159 -30 m	Er 160 28.6 h	Er 161 3/24 b	Er 162 0,139	Er 163 75 m	Er 164 1.601
102-294. 10-200	THE R. S.	filtin.		110	4 6077 1 221 200 1 231 200	1 14.13 114.13 137.6	8. a. 8.000 5.0151.000 004	1 Aline	温益	ir an. The set	8.4.1.1. 1.504; edb	ine	in.		T DITA	e (a) Man so soid
Ho 147 5.8 s	Hp 148	Ha 149	Ho 150	Ho 151 #24 834	Ho 152	Ho 153	Ho 154	Ho 155 40 m	Ho 155	Ho 157 128 m	Ho 158	Ho 159	Ho 160	Ho 151	Ho 162	Ho 163
and a state of the	and the second	Aug.	戦権	播展			調 読	14-14 		0 ⁴ 1.211.8 1003.041; 1032.07.		NER.		A.H. 2	North State	um de-
Dy 146	Dy 147	Dy 148 1.1 m	Dy 149	Dy 150	Dy 151 17 m	Dy 152 24 h	Dy 163 1129 h	Dy 154 3.0 - 10 ⁴ a	Dy 165 10.0 b	Dy 156 0.056	Dy 157 8.1 h	Dy 158 0.095	Dy 159 144,4 d	Dy 160 2.329	Dy 161 18,869	Dy 162 25,475
BRE BIRT		er printen andere alleften ge		30	Line An Line 198	-1.67 /117	9-3-45 9-81-3+6 100-000	+210	leases.	280 200 - 2000	im.	ini ini ance	and an	1080 1911 n 8, 0910	• 000: Phi e ≪10-11	H 170
TO 145	Tb 148	Tb 147	Tb 148	TB 149	T0 150	Tb 151	To 152 Gar etta	Tb 153 #39.0	To 154	Tb 155 5.02 0	Th 158	Tb 157 20 /i	Tb 158	Tb 159 100	To 160 72.30	Tb 181 6.90 d
							ZE	2242-itte. Him. tone an.		APT: DE		- piel	nom 🛃	n 20 1	1 071 200; (est. = 170	17-202,080. 1225,41,72.
Gd 144 4.5 m	Gd 145 85 11 1	Gd 145 48.3 d	Gd 147 38.1 h	Gd 148 74.6 a	Gd 149 9.25 d	Gd 150 1.8 · 10* a	Gd 151 120-0	Gd 152 0.20	Gd 153 239.47 d	Gd 154 2.18	Gd 165 14.80	Gd 156 20.47	Gd 157 15.65	Gd 158 24.84	Gd 159 18:48 h	Gd 160 21.88
- 313. 2488. - 513. 2488. - 630. 547		Testa and	affi int	u3.100 v14000	111-11155 111-11-150 111-1-150	+1.78	e a stati Visaribas Visa	+ 2.16 + 700 +++++0.007	187:163,70 -20000 +	100	2189000 05 - 100000	a-20	250000 	1123	57 1.9 7393.00	-0
EU 143	E0 144 10.2 s	EU 145 5.58 d	Eu 146 4.51 d	Eu 147 246 0	EU 148 55.6 d	EU 149 93.1 d	EU 150	Eu 151 47.81	EU 152	Eu 153 52,19	Ets 154	Eu 155 4.701 a	Eu 150 1524	Eu 157 15.16 h	Eu 158 40 m	Eu 159 18.1 m
11117, 1985 1912: 306. 1982	Cinn du.	Tanal Sea	11 16 21 14 16 21 14 16 21 14 16 21	n Fan A Gorinani Ara	THE MAN		. And	n 4 + 3158 + 0000		2900 Reality		4110-17-1018 967:188 6/788	4" 1.0, 0.4 +0.02, 64 1201	64; 454; 575, 619	877 24 34 9845 1077; #0 995	11 ¹¹ 2.4
Sm 142 72.4 m	Sm 143	8m.144 3.07	Sm 145 340 d	Sm 146 1.03 - 10 ⁴ a	Sm 147 14.99	Sm 148 11.24	Sm 149 13.82	Sm 150 7:38	Sm 151 93 a	Sm 152 26.75	Sm 153 46.27 h	Sm 154 22,75	Sm 155 22.4 m	Sm 156 9.4 h	Stp 157 8.11 m	Sm 158 5.51 m
10 10 1000	1000-1 THE		e cyano anno 11 e 2001	n 2.455	- 2.235. A 54 - A 0.0002	+1.90 #24	n 40100 Na n 00011		11121	and the	11727,08- 1100,00, 1100,00,		and and	10" 4.9 	100 III.	р ⁻ у 1995 рен. 1996 -
Pm 141 23.9 m	Pm 142 40.5 s	Pm 143 265.d	Pin 144 1.0 a	Pm 145 17.7 a	Pm 146 5.53 a	Pm 147 2.62 a	Pm 148	Pm 149 53.1 h	Pm 158 27 h	Pm 151 28.4 h	Pm 152	Pm 150 53 m	Pm 154	Pm 166 41.5 a	Pm 166 26.7 s	Pm 157 10.6 s
to 12223 (Annue 1254 (Canae 12	the .		8, 88 8* 9 803, 887 877	A A A A A A A A A A A A A A A A A A A	ANA TAN DACE	翻		17-11 9-086 9-1408	17 2 2 2 3 A (304) (1123) (1001	11 0 10 12 150 0 10		ani virt. pro	14	n az ma rasi lin Ma	THE OWNER	1991. 1991. 2991. 1971
Nd 140 3.37 d	NG 141	Nd 142 27:2	Nd 143 12.2	Nd 144 23.6	Nd 145 8.3	Nd 146 17.2	Nd 147 10.99 d	Nd 148 5.7	Nd 149 1.73 h	Nd 150 5.6	Nd 151 124 m	Nd 152	Nd 153 28.9 s	Nd 154 25.9.9	Nd 155 8.9 a	No 156 5.5
4 2007 H	tanti mili	60	a 500 1 1 1 1 1 1 1 1 1	:10	141 ² 141 ² 1417 0.000013	115-)	503, 881. 9 4 442	894	Entraine.	80 ⁻	67 1.2-2.3 7157,228 1630,	1192 201 -	in a la ross	180-800 181-84 130-0	1-02:43 7108:413, 933:41	An an
Pr 139 45h	Pr 140 3.4 m	Pr 1415 100	Pr 142	Pr 143 33,67 d	Pr 144	Pr 145 5.98 h	Pr 145 24.0 m	Pr 147 13.6 m	Pr 148	Pr 149 2.25 m	Pr 150 -54 514	Pr 151 18.9 s	Pr 152 385	Pr 163 4.3 s	Pr 154 2.3 a	Pr 185 >300 na
TCIME HOLE	R*2A	4	201	an a	18 III.	San una	Wat	11" # 1. / # 1. 31 E. 0611 A-0, 10	14 14 14 14 14 14 14 14 14 14 14 14 14 1	07-10. 7.1141 (ize: 1141.		17704 1485 000 1485 000	17" 7 554: 200. 1 6 79	Fino-toes	177 Las. 74	1 -9
Ce 138 0.251	Ce 139 831 mai	Ce 140 88.450	Ce 141 32.50 d	Ce 142 11.114	Ce 143 33.0 h	Ce 144 284.5 d	Ce 145 2.95 m	Ce 146 13.5 m	Ce 147 57 s	Ce 148 48 s	Ce 149	Ce 150 4.1 s	Ce 151	Ce 152	Ce 153 >300 m	Ce 154 >300 ns
-020-10	ine the	-104	1550 1550	-000	1000.5/1 1000.5/1 1000.5/1	154(30.).	774-481 (14m) 200-481	17-24 y217-211	Long in case	TEN MAR	Cherney en	1-102344	0	1777 (1981) 1777 (1981)	a+4	1

Comparison of the **bio-distribution** of different tumor seeking tracers labeled with radio-lanthanides, ²²⁵Ac and ¹¹¹In free chelates: Citrate EDTMP specific tracers: Octreotide and Mab Linker: **Aminobenzyl-DTPA**

G.J.Beyer, Hyperfine Interactions 129 (2000) 529.

Principle of Radio Immuno Therapy

Survival of SCID mice

G.J. Beyer et al., Eur. J. Nucl. Med. Molec. Imaging 31 (2004) 547.

103 d p.i.

108 d p.i.

300 µg MoAb cold

5 MBq ¹⁴⁹Tb-MoAb (5 μg)

CERN provides physics results even when the LHC does not run!

ISOL beams are not a subfield of nuclear physics but have incredibly many applications across many disciplines

Nuclear chart at ISOLDE

Existing thick-target ISOL beams

1 H	Isotopes with T _{1/2} < 0.1 s separated												He ²				
3	4	Isotopes with T _{1/2} < 10 s separated 5 6 7 8 9											9	10			
Li	Be	B C N O F											F	Ne			
11	12	12Isotopes with T1/2 > 10 s separated1314IgAISi										15	16	17	18		
Na	Mg											P	S	CI	Ar		
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	³⁹	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116		118

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Identification \neq **Separation**

Identification:

The beam composition is determined but not changed. e.g. time-of-flight measurement, ΔE measurement,...

 Separation: Beam contaminations are removed.
 e.g. mass separation, chemical separation,...

- Unique isotope selection requires the combination of at least two different identification/separation methods.
- A higher-fold combination gives improved suppression factors.

Prism

The angles i and r that the rays make with the normal are the angles of incidence and refraction. Because n_2 depends upon wavelength, the incident white ray separates into its constituent colours upon refraction, with deviation of the red ray the least and the violet ray the most.

Dispersive ion optical elements

FIG. 5.15 A system with momentum dependent deflection of the central ray, showing lateral displacement due to momentum spread.

- magnets are momentum dispersive
- electrostatic deflectors are energy dispersive
- Wien filters are velocity dispersive

Focusing by tilted entrance/exit of magnetic field

FIG. 5.3 Particles leaving a magnetic field normal to the edge.

FIG. 5.4 Particles leaving a magnetic field at an angle to the edge. Dotted lines are for normal exit (cf. Fig. 5.3).

horizontal focusing effect

Focusing by tilted entrance/exit of magnetic field

D

FIG. 5.5 Plan view of a positively charged particle entering a magnetic field directed into the paper. The trajectory makes an angle β with the normal. For view in the direction of arrow G see Fig. 5.6. FIG. 5.6 View of Fig. 5.5 in the direction of arrow G. DE is the median plane on which $H_z = 0$.

Hz cos B

vertical defocusing effect

Quadrupoles

Electrostatic:

- $V = U (x^2 y^2)/a^2$
- \mathcal{E} = grad V
- $\mathcal{E}_{x} = -dV/dx = -2U/a^{2} x + U$
- $\mathcal{E}_{y} = -dV/dy = 2U/a^{2} y$
- 1. Force increases proportionally to distance from origin.
- 2. Focusing in x and defocusing in y (or vice versa).
- ⇒ requires quadrupole doublet or triplet to focus in x and y

Multipole correction elements

Correction of higher-order effects (aberrations) by hexapole, octupole, etc. fields. Often limited by beam diagnostics!

Fig. 1. Squirrel-cage-like electrode arrangement of an electrostatic 2(n + 1) pole consisting of 18 wires, i.e. a squirrel-cage with n = 8. In this multipole the potential of each wire is controlled by a separate power supply.

Fig. 3. Calculated potential distributions in a 32-wire squirrelcage multipole for the cases of dipole $(V_1 \neq 0)$, quadrupole $(V_2 \neq 0)$, hexapole $(V_3 \neq 0)$, octupole $(V_4 \neq 0)$ excitations [see eq. (1)] with vanishing $\psi_1, \psi_2, \psi_3, \psi_4, \cdots$.

M. Antl and H. Wollnik, Nucl. Instr. Meth. A274 (1989) 45.

Ion-optical calculations

1. Matrix calculation:

TRANSPORT, COSY-INFINITY, GIOS, GICO, LISE++,...

2. MC simulations/ray tracing: SIMION, ZGOUBY, RAYTRACE, LISE++, MOCADI,...

Focal plane of LOHENGRIN

P. Armbruster et al., Nucl. Instr. Meth. 139 (1976) 213.

LOHENGRIN focal plane

Energy dispersion: $\Delta x = D_E \Delta E/E;$ $D_E = 7.2 \text{ cm}/\% = 7.2 \text{ m}$ Mass dispersion: $\Delta y = D_m \Delta m/m;$ $D_m = 3.24 \text{ cm}/\% = 3.24 \text{ m}$

A = 99, E = 99 MeV A = 99, E=100 MeV A = 99, E=101 MeV

LOHENGRIN energy resolution

Magnification in x:

Energy resolution:

m

$$x_i = M_x x_o$$

 $R_E = x_i / D_E = M_x \cdot x_o / D_E =$
= 1.0 \cdot 7.0 cm / 7.2 m \approx 1/100

depends on target length!

⁷Be(n,p) spectrum measured at neutron beam

⁷Be(n,p) measured at LOHENGRIN

LOHENGRIN mass resolution

Magnification in y:

Mass resolution:

$$y_i = M_y y_o$$

 $R_m = y_i / D_m = M_y \cdot y_o / D_m =$
= 1.0 \cdot 0.3 cm / 3.24 m \approx 1/1000

depends on target width!

A/q separator

A "mass" separator is in reality an A/q separator and will mix masses with the same A/q and same E/q.

Avoid the use of A/q with (near-)integer ratios!

A = 95, q=19, E = 95 MeV A=100, q=20, E=100 MeV

A=105, q=21, E=105 MeV

F

Focal plane of LOHENGRIN

Measured kinetic energy distribution

Reverse Energy Dispersion magnet

Fig. 5. Horizontal displacement with respect to the central trajectory of a beam arising from a $5 \times 70 \text{ mm}^2$ target vs the central trajectory length. The vertical dashed and dotted lines show respectively the extent of the pole pieces and the focal position.

G. Fioni et al., Nucl. Instr. Meth. A332 (2003) 175.

LOHENGRIN Setup

Measured kinetic energy distribution

Detection of rare ternary particles

Gamma decay of 7.6 µs ⁹⁸Y isomer

Energy (keV)

17⁻ isomer at 6.6 MeV in ⁹⁸Zr

Existing thick-target ISOL beams

1 H	Isotopes with T _{1/2} < 0.1 s separated												He ²				
3	4	Isotopes with T _{1/2} < 10 s separated 5 6 7 8											9	10			
Li	Be	B C N O F											F	Ne			
11	12	12Isotopes with T1/2 > 10 s separated1314IgAISi										15	16	17	18		
Na	Mg											P	S	CI	Ar		
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	³⁹	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	115	116		118

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

The LOHENGRIN fission fragment separator

Ionic charge separation

Ionic charge state distribution

Ionic charge

Ionic charge separation

Ionic charge separation

Separation with gas-filled magnet

Isotope selection with gas-filled separators

- Gas collisions give average $q = fkt(Z,v) \propto Z^{1/3} v/v_{Bohr}$
- p/q selection by magnetic deflection
- Bp ∝ A/Z^{1/3} (A. Ghiorso et al., Nucl. Instr. Meth. A269 (1988) 192)

Multistep-Separation in Accelerator Mass Spectrometry

10⁻¹⁵ sensitivity!

From ISOL beams to RIBs with higher energies

ISOL beams

- have well-defined energy ($\Delta E/E \approx 1 eV/60 \text{ keV}$)
- have usually small emittance (e.g. 10 π mm mrad), i.e. limited opening angle
- have often well-defined ionic charge q=1
- Z selection is performed before the mass separator

Recoils or fragments of nuclear reactions:

- have large energy spread
- large angular spread
- different ionic charge states
- depending on nuclear reaction different Z

Requirements for in-flight separators

Fig. 2. Domains of kinetic energies of the reaction products from various nuclear reactions.

G. Münzenberg, Nucl. Instr. Meth. B70 (1992) 265.

Recoil separators

- separate the products of a nuclear reaction (recoils) from the projectile beam
- early dumping of unwanted beam
- optionally also A/q separation of reaction products
- usually kinetic energies up to 10 MeV/nucleon
- mass dispersion achieved by combination of magnetic dipoles, electric dipoles or Wien filter
- usually additional quadrupoles for focusing

SHIP at GSI Darmstadt

G. Münzenberg et al., Nucl. Instr. Meth. 141 (1979) 65.

Fig. 5. Ion-optical elements of the VASSILISSA and computer-simulated trajectories of ¹⁹⁸Po ions.

A.G. Popeko et al., Nucl. Instr. Meth. A510 (2003) 371.

DGFRS: Dubna Gas-Filled Recoil Separator

K. Subotic et al., Nucl. Instr. Meth. A481 (2002) 71.

RIKEN Gas-filled Recoil Separator GARIS

upper end of nuclear chart 2007

GANIL/SPIRAL1/SPIRAL2 facility

S3 at SPIRAL2, GANIL, Caen

Fig. 1. Schematic idea for S^3 showing the two stage separator.

S3 at SPIRAL2, GANIL, Caen

A. Drouart et al., Nucl. Instr. Meth. B266(2008) 4162.

VAMOS at GANIL

Very wide acceptance \Rightarrow trajectory reconstruction for

H. Savajols for the VAMOS Collaboration, Nucl. Instr. Meth. B204 (2003) 146.

DRAGON

D. Hutcheon, Nucl. Instr. Meth. A498 (2003) 190.

Normal kinematics: n, p or light ions on heavy target

Inverse kinematics: heavy ions on light target

- complex and expensive accelerator
- reaction products forward focused

Momentum-loss achromat (Wedge separation)

Fig. 4. Schematic representation of the ion-optics used in a momentum-loss achromat to separate projectile fragments.

D.J. Morrissey and B.M. Sherill, Lecture Notes in Physics 651 (2004) 113.

LISE

R. Anne et al., Nucl. Instr. Meth. A257 (1987) 215. R. Anne et al., Nucl. Instr. Meth. B70 (1992) 276.

Dispersive ion optical elements

- magnets are momentum dispersive
- electrostatic deflectors are energy dispersive
- Wien filters are velocity dispersive
- achromatic wedges are dispersive in mZ²/E or (Z/v)2
- **RF kicker are flight time selective**

Effect of wedge selection

K.H. Schmidt et al., Nucl. Instr. Meth. A260 (1987) 287.

T. Kubo, Nucl. Instr. Meth. B204 (2003) 97.

Driver accelerator (v = 0.25-0.6 c)

- Fragment separator (A1900 NSCL, FRS GSI, BigRIPS RIKEN, ALPHA spectrometer/LISE GANIL)
- Identification and beam transport
 - Stopped beam experiments, reaccelerated beam experiments
 - Fast beam experiments
 - Secondary reaction
 - Reaction product identification (S800 spectrograph, CATE/Aladin, Silicon telescopes/TOF wall, SPEG)

- Fragment separator (A1900 NSCL, FRS GSI, BigRIPS RIKEN, ALPHA/LISE GANIL)
- Identification and beam transport
 - > Stopped beam experiments
 - Fast beam experiments
 - Secondary reaction
 - Reaction product identification (S800 spectrograph, CATE/Aladin, Silicon telescopes/TOF wall, SPEG)

Isotope selection at (high E) in-flight separators

- Ionization to q = Z (high energies!)
- A/Z selection by magnetic deflection
- B $\rho \propto$ A/Z v γ
- v can be measured by time of flight or selected by Wien filter
- Z selection by specific energy loss

Perfect isotope identification at high energy 1 A GeV ²³⁸U on titanium

Optimum energy for FRS-like momentum achromat

K.H. Schmidt, Euroschool Leuven 2000.

Super-FRS at FAIR, Darmstadt

Fig. 4. Beam catcher locations in the first dipole stage of the preseparator. Depending on the fragment setting the primary beam will be dumped at the position given by the relative difference in magnetic rigidity. Plotted are trajectories of primary beams with different $\delta_{B\rho}$ values in steps of 1%.

Fig. 5. Layout of the front part of the beam catcher. The V-shaped graphite block will absorb the beam energy of up to 50 kW and is actively cooled.

M. Winkler et al., Nucl. Instr. Meth. B266 (2008) 4183.

BigRIPS at RIKEN, Japan

T. Kubo, Nucl. Instr. Meth. B204 (2003) 97.
Q3D Spectrometer

Fig. 1. Ion optical layout of the QDDD spectrograph. T – target chamber; ME – multipole element; D1, D2, D3 – dipole magnets; E.D. – electrostatic deflector; F – focal surface; D – detector chamber.

M. Löffler et al., Nucl. Instr. Meth. 111 (1973) 1.

Example spectrum ¹⁸⁰Hf(d,p)

V. Bondarenko et al. / Nuclear Physics A 709 (2002) 3-59

Fig. 3. An example of proton spectra from the reaction 180 Hf(\vec{d} , p) 181 Hf. The peaks are labelled by the excitation energy in keV. The proton groups labeled with 'c' belong to contaminant isotopes.

19

The SPEG spectrometer at GANIL

Grand Raiden Spectrometer

(³He, t) reaction

³He beam

Large Angl

Spectromet

Beam line WS-course at RCNP

⁹Be(³He,t)⁹B spectrum (at various scales)

⁹Be(³He,t)⁹B spectrum (II)

References

- Inorganic Mass Spectrometry: Principles and Applications, Sabine Becker, Wiley, 2007.
- Optics of Charged Particles, Hermann Wollnik, Academic Press 1987.
- Mass spectroscopy, H.E. Duckworth et al., Cambridge Univ. Press, 1986.
- The transport of charged particle beams, A.P. Banford, E. & F.N. Spon, 1966.
- Proceedings of the EMIS (Electromagnetic Isotope Separation) Conferences: Nucl. Instr. Meth. B266, NIM B204, NIM B126, NIM B70, ...