

Les détecteurs à semi-conducteurs - silicium et germanium en physique nucléaire

Laurence Lavergne

Institut de Physique Nucléaire Division Instrumentation Service Détecteurs

lavergne@ipno.in2p3.fr

- Bref rappel historique des détecteurs Si et Ge
- Généralité sur le semi-conducteur
- Technologie des détecteurs Si et Ge
- Formation du signal
- Quelques ensembles de détection

En physique nucléaire!

- + 1948 : premiers dispositifs pour détecter des α
 - Une diode Ge à pointe polarisée en inverse (Mac Kay)
 - Une diode à jonction NP
- 1958 : le premier détecteur à barrière de surface Au-Si
- 1960-1970 :
 - 1960 : le premier symposium aux USA sur les détecteurs à SC (Washington)
 - 1963 : le premier symposium européen (Liège, Belgium)
 - Le process de compensation au Li dans le Si et Ge

Un peu d'histoire

- Fin 60 à fin 80 : les détecteurs Ge(Li)
- Fin 70 : les détecteurs HPGe
- 1980 : le process planar (Kemmer)
 -> détecteurs à pistes
 -> détecteurs à pixel
 -> détecteurs à drift (Gatti, Rehak)
 - -> détecteurs 3D

Généralités sur le SC

- Apport du semi-conducteur à la détection nucléaire
 - haut pouvoir d'arrêt des particules chargées
 - grande densité ~10²²/cm³
 - chambre d'ionisation solide
 - faible énergie moyenne de création de charges, ~3eV (Si, Ge) contre 30eV (gaz)
 - efficace pour la détection γ

Généralités sur le SC

- Choix du matériau
 - -Nature des particules à détecter
 - -Énergie
 - -Applications (environnement, température,....)
- Intérêt des détecteurs à SC
 - -Identification des particules, des ions
 - -Localisation
 - -Tracking

Généralités sur le SC

•Aujourd'hui

- -Spectroscopie nucléaire
- -Mesure de position (précision accrue, électronique de lecture rapide...)
- -Identification des particules par reconnaissance de forme
- -Intégration de l'électronique de sortie

Structure cristalline

• Structure diamant : Si ou Ge

Structure cubique à faces centrées 2 CFC imbriqués, 8 atomes dans une maille

- Différentes densités suivant les plans cristallographiques
- Impact sur les propriétés des détecteurs

Détecteurs Organisation des plans

(111) (100) (110)

L.Lavergne, Du détecteur à la mesure, Oléron, 18-25 juin 2009

Si&Ge

- Un germe monocristallin est introduit dans le mélange (Si fondu)
- Le germe est tiré lentement en rotation à partir de la surface du mélange
- Le Si se refroidit dès la sortie du mélange -> croissance du lingot monocristallin
- Le diamètre du lingot est fonction de la vitesse de tirage

L.Lavergne, Du détecteur à la mesure, Oléron, 18-25 juin 2009

Croissance des lingots

- Méthode Czochralski (CZ)
 - Les lingots contiennent des impuretés indésirables
 - Méthode peu utilisée pour les applications de détection

Croissance des lingots

- Le procédé Float Zone (FZ)
 - Matériau de départ : barreau de Si polycristallin de haute pureté avec un germe monocristallin
 - Une petite zone est chauffée, fondue
 - La zone fondue est déplacée à partir du germe sur tout le long du lingot en déplaçant le chauffage vers le haut
 - En fin de process, le Si s'est refroidit et a la même orientation que le germe
 - Méthode utilisé pour la détection

- Le diamètre des lingots utilisés pour la détection va jusqu'à 6" (152 mm)
- Les lingots sont découpés en tranches (wafers), les surfaces subissent des traitements mécaniques (polissage) et chimiques (etchings)

 Chaque atome est entouré de 4 voisins et partage ses 4 électrons périphériques avec ses voisins, formant des liaisons covalentes

L'atome de silicium \rightarrow 4 électrons de valence

- À basse énergie tous les électrons de valence restent liés
- À température plus élevée, les vibrations thermiques peuvent rompre les liaisons covalentes et un électron de valence devient un électron libre, laissant derrière lui une lacune ou trou (de charge positive)
- L'électron et le trou libres sont alors disponibles pour la conduction

Le SC intrinsèque

- À O K, le SC est isolant
- T : un certain nombre de porteurs libres est crée
 - n électrons (provenant de BV par excitation thermique)
 - p trous (présents dans BV)
- Des relations donnant les concentrations de porteurs
 - n=p=n; autant de trous dans BV que d'électrons dans BC
 - $n_i^2 = np$ (loi d'action de masse)
 - n, proportionnel à exp(-Eg/kT)

Bande de

Le SC intrinsèque

- La position du niveau de Fermi définit les propriétés électroniques du semi-conducteur.
- Pour un semi-conducteur intrinsèque, le niveau de Fermi se situe au milieu de la bande interdite

- Par introduction d'impuretés en substitution de type P ou N dans le réseau (en général par diffusion)
- Par irradiation avec des neutrons : dopage par transmutation neutronique (NTD : neutron transmutational doping)
- Par purification du SC, en laissant les impuretés existantes du bon type : impuretés résiduelles (Ge)

→ la conduction est modifiée, des charges libres supplémentaires (électrons ou trous) sont introduites.

Dopage

Les trous sont les porteurs majoritaires. Les électrons sont les porteurs majoritaires.

- ${}^{30}Si + n \longrightarrow {}^{31}Si \longrightarrow {}^{31}P$
- On transforme l'isotope ³⁰Si (3% dans le silicium) en ³¹P, dopant du Si de type N
- Process :
 - Cristal FZ non dopé
 - Irradiation neutrons
 - Décroissance de l'activité
 - Recuit et caractérisation (durée de vie des porteurs, nombre de dopants...)

Diagramme des bandes

- Dopage N
- N_D atomes (5 e⁻), n ~ N_D

Détecteurs

Si&Ge

- pentavalent (colonne V)
- P As Sb
- Donneurs
- $E_{D} = E_{C} 0,045 \text{ eV}$
- Dopants ionisés fixes (P⁺)

- Dopage P
- N_A atomes (3 e⁻), p~N_A
- trivalent (colonne III)
- B Ga Al In
- Accepteurs
- $E_A = E_V + 0.045 \text{ eV}$
- Dopants ionisés fixes (B-)

L.Lavergne, Du détecteur à la mesure, Oléron, 18-25 juin 2009

- Aptitude des porteurs à se déplacer dans le réseau cristallin
- v = μ . F
- Valeurs de mobilité
 μ₋ : mobilité des électrons
 μ₊ : mobilité des trous

Si :
$$\mu_{-} \sim 1350 \text{ cm}^{2} / \text{V.s}$$

 $\mu_{+} \sim 480 \text{ cm}^{2} / \text{V.s}$
Ge : $\mu_{-} \sim 3900 \text{ cm}^{2} / \text{V.s}$
 $\mu_{+} \sim 1900 \text{ cm}^{2} / \text{V.s}$ (@300K)

Mobilité des charges, µ

- La mobilité dépend de:
 - La temperature : Ge : $\mu_{-} \sim 3.6 \ 10^4 \ \text{cm}^2 / \text{V.s}$, $\mu_{+} \sim 4.2 \ 10^4 \ \text{cm}^2 / \text{V.s}$ (@77K)
 - Du dopage, de l'orientation cristalline
 - Du champ électrique F

m=2 pour les électrons m=1 pour les trous v_s : vitesse de saturation Si : ~ 10⁷cm/s Ge: ~6 10⁶ cm/s

- La résistivité dépend du dopage $: N_A$ et N_D
- Pour du Si type N : $\rho \approx \frac{1}{N_{h}.q.\mu_{-}}$
- Pour du Si type P : $\rho \approx \frac{1}{N_{A}.q.\mu_{+}}$

- En général, les résistivités pour la détection sont fortes
 - Si N : ρ > 5000 jusqu'à 15000 Ω .cm Si P : ρ ~ 1000 Ω .cm
- Pour le Ge on s'exprime en concentration de dopants résiduels : $|N_A N_D| \sim 10^{10} \text{ cm}^{-3}$

 Le matériau NTD offre un résistivité radiale plus homogène que pour du matériau FZ

Détecteurs

Si&Ge

<+/- 5% (30% pour un cristal FZ), mais la résistivité est plus faible (~2500 Ω .cm)

- Sur la concentration des porteurs
 - n / quand T /

Détecteurs

Si&Ge

• Sur la mobilité μ

L'effet de l'orientation

- (NIM A 447 (2000) 350-360)
- Important pour le détecteur germanium
- Mobilité anisotrope des porteurs de charges
- Intervient dans le calcul de la forme du signal
- Effet de canalisation surtout dans le Si

- Énergie nécessaire pour créer une paire électron trou : $\boldsymbol{\omega}$
 - Si : ω = 3.62 eV (300K) et 3.76 eV (77K)
 - $Ge: \omega = 2.96 \text{ eV} (77\text{K})$
- ω > Eg (gap, énergie de bande interdite), elle tient compte des propriétés optiques, thermiques et de diffusion du cristal
- Rappel : @ 300K Si : Eg = 1,1 eV Ge : Eg = 0,66 eV

- Détecteurs Si&Ge
 - Simplification : mise en contact de deux matériaux P et N
 - Que se passe-t-il à l'équilibre thermodynamique? :
 - Différence de gradients de concentration de porteurs
 - Diffusion des porteurs vers une zone moins peuplée
 - Apparition d'une charge d'espace due aux dopants ionisés fixes
 - Établissement d'un champ électrique qui empêche toute diffusion

 Une zone désertée de porteurs libres apparaît, c'est la zone déplétée.

La jonction PN

SC type P

SC type N

L.Lavergne, Du détecteur à la mesure, Oléron, 18-25 juin 2009

La jonction PN

SC type P

SC type N

Zone déplétée

- Densité de charge d'espace : σ $x_p < x < 0$ $\sigma(x) = -qN_A$ $0 < x < x_n$ $\sigma(x) = +qN_D$ ailleurs $\sigma(x) = 0$
- Potentiel de diffusion Vd

Détecteurs

Si&Ge

- Équation de Poisson : $\frac{d^2 V}{dx^2} + \frac{\sigma(x)}{\epsilon} = 0$ -> Electric field F(x)
- Largeur de déplétion : x = x_p + x_n

Détecteurs Si&Ge La jonction polarisée en inverse

- La tension V se superpose au potentiel de diffusion Vd
- La barrière de potentiel augmente et devient infranchissable pour les porteurs majoritaires
- La zone de déplétion augmente
- Le courant est dû aux porteurs minoritaires

Le claquage de la jonction

Si la tension augmente, le champ augmente

Détecteurs

Si&Ge

- Au-delà de 10⁵ V/cm, claquage Zener ou avalanche
- Dépend de la résistivité du matériau

Augmentation du courant inverse pouvant conduire à la dégradation de la jonction

La jonction est une diode

Détecteurs

L.Lavergne, Du détecteur à la mesure, Oléron, 18-25 juin 2009

Détecteurs

Les détecteurs Si et Ge sont basés essentiellement sur la jonction PN

Quand une tension inverse est appliquée à la jonction, la zone de déplétion augmente.

Jonction P+N asymétrique

L.Lavergne, Du détecteur à la mesure, Oléron, 18-25 juin 2009

Détecteurs

Formules de premiers secours

Détecteurs Si&Ge

$$V_{0} = \frac{qN_{D}}{2\epsilon}d^{2}$$
$$d = \sqrt{\frac{2\epsilon}{qN_{D}}}V_{0}$$
$$F_{crit} = \frac{qN_{D}}{\epsilon}d = \frac{2V_{0}}{d}$$
$$F_{min} = \frac{V - V_{0}}{d}$$
$$F_{max} = \frac{V + V_{0}}{d}$$
$$C = \frac{\epsilon}{d} \times S$$

Détecteurs silicium $V_{0}(v) \sim 4 \frac{d^{2}(\mu m)}{\rho(\Omega.cm)}$ $d \sim \frac{1}{2} \sqrt{\rho.V_{0}}$ $F_{max}(V/cm) \sim 4.10^4 \sqrt{\frac{V_0}{\Omega}}$ $\mathcal{C}(\mathrm{pF}/\mathrm{mm}^2) = \frac{106}{\mathrm{d}}$

- Passivé et implanté (planar)
- Barrière de surface

Détecteurs

Si&Ge

Compensé au lithium

-> surtout pour les particules chargées, parfois pour des photons

Matériau de départ wafer Si (N) de forte résistivité (> 3000 Ω.cm)

 Oxydation à ~1000°C (200 nm)
 Opérations en salle blanches : nettoyage, croissance de l'oxyde SiO₂ et passivation des surfaces

- Photolithographie de l'oxyde
 - Dépôt de résine photosensible
 - 🔶 masquage
 - Insolation
 - Etching

Détecteurs Si&Ge Le détecteur passivé et implanté

- Implantation (~50nm)
 - Bore (15 keV 5.10¹⁴ cm⁻²) -> P⁺ -> jonction
 - Phosphore (30 keV- 2.10¹⁵ cm⁻²) ou As (30 à 170 keV - ~10¹⁶ cm⁻²) -> N+ -> ohmique

• Recuit sous flux de N_2 (800 à 900°C)

 Évaporation d'Al sur les deux faces du wafer (~100 nm)

Photolithographie de l'Al

Passivation (si nécessaire)

Détecteurs Si&Ge Le détecteur passivé et implanté

- En principe :
 - Fenêtre d'entrée : Si(P⁺) + aluminium (jonction)
 - Fenêtre de sortie : Si(N⁺)+ aluminium (contact ohmique)
 - Structure de garde (1 ou plusieurs anneaux de garde) qui limite les injections de courants provenant des bords
 - Passivation des zones non actives

- Essentiellement fabriqués par des industriels (CANBERRA, MICRON, ORTEC...)
- Fabrication sur wafers de 4,5 et 6 " de diamètre
- Épaisseur de 40 à 2000 µm (dépend des fournisseurs)

Le courant de fuite

3 contributions :

Détecteurs

- Génération en volume de porteurs crées dans la zone de déplétion.
 Dépend de la tension et de la durée de vie des porteurs minoritaires.
- Diffusion des porteurs en dehors de la zone de déplétion. Dépend du dopage.
- Effets de surface. Dépend essentiellement du process.

- En cas d'urgence, il est possible de connaître quelques spécifications du détecteur.
- Mesure de la capacité -> tension de déplétion

Mesure de la position

- Fait par division de charge résistive : position sensitive detectors (PSD), ou détecteurs de position
- Ou en divisant les surfaces en plusieurs segments : détecteurs à pistes ou strip detectors

 \cdot Les couches résistives sont faites par implantation (une ou deux faces)

 les électrodes sont déposées de part et d'autre des surfaces actives

 division résistive : le signal sur chaque électrode est proportionnel à la distance entre l'interaction et l'électrode

Détecteurs Si&Ge

- 2 à 4 électrodes
- un signal par électrode
- combinaisons des signaux

Technologies utilisées pour les détecteurs 1D ou 2D.

- $\boldsymbol{\cdot}$ Segmentation sur la face jonction : localisation à une dimension
- Single-sided detector
- · les pistes ont leur propre électronique de lecture
- les pistes sont isolées par des interpistes passivées (SiO_2)

- · la segmentation se fait sur les deux faces (90°) -> détecteurs à 2 dimensions
- Double-sided detectors
- les pistes N⁺ sur la face N sont isolées par des implantations P⁺.

différentes géométries existent (circulaires, annulaires, rectangulaires...)

 les coûts sont assez élevés notamment pour réaliser les masques

En physique nucléaire

- taille des segments (pistes) : jusqu'à quelques mm
- compromis à faire entre le nombre de voies d'électronique et la résolution spatiale

60x60 mm² 300 μm (60x60 pistes)

16 segments/ dia 20mm/ 1500µm

60×40 mm² 100 μm

Ø35 mm Ø10 mm 4 segments

- Permet de la matière à la surface du détecteur
 - oxyde
 - Support mécanique et connectique
 - Cartes d'électronique de lecture

 Les composants peuvent être intégrés à la surface du détecteur (capacités and résistances)

 Cela constitue des zones mortes pour les particules chargées en physique nucléaire

Barrière de surface

Détecteurs

- Matériau de départ : Si (N) de haute résistivité (> 3000 Ω.cm)
- Contact Shottky : dépôt d'Au
- Contact ohmique : dépôt d'Al
- Connection : fil d'or (ø 50 μm)

Barrière de surface

• Les états de surface sont de type P⁺

Détecteurs

Si&Ge

 Procédé toujours utilisé en laboratoire (IPN) et chez ORTEC

Détecteurs amincis

- Pour des épaisseurs inférieures à 300 μm
- L'amincissement se fait par
 - 1. Abrasion mécanique : procédé long et pas toujours fiable : l'homogénéité peut ne pas être satisfaisante.
 - 2. Etching anisotropique:
 - TMAH 80°C- 14h
 - <100>

Application : détection et identification des ions lourds

- Développé au début des années 60 ce procédé a été largement utilisé pour obtenir des épaisseurs de détection plus élevées que celles qu'offrent les jonctions
- Épaisseurs disponibles : 1 à 20 mm -> structure PIN
- Actuellement concurrencé par des jonctions de 1 à 2 mm

Détecteur compensé au Li

Détecteurs

- Matériau de départ : Si (P, dopants Bore) de résistivité ~1000 Ω.cm
- Dépôt de Li
- Diffusion de Li⁺, atome petit et de type donneur (dopage N⁺) : réalisation d'une jonction NP que l'on polarise en inverse
- Migration du Li durant des jours, des mois @120°C : neutralisation des impuretés de B⁻ par Li⁺. La zone tend à devenir neutre (I)
- Dépôt d'or :
 - Face avant : zone P⁺
 - Face arrière (Li, zone N⁺) : contact ohmique.

Détecteur Si(Li) segmentés

Ex : étapes de fabrication d'un détecteur Si(Li) segmenté

 $5 \text{ mm}, 55 \times 100 \text{ mm}^2$

Forschungszentrum Jülich IKP

L.Lavergne, Du détecteur à la mesure, Oléron, 18-25 juin 2009

Détecteurs

Type de détecteurs	Géométrie	Résolution en énergie	Raie de calibration	Spécificité
Passivé et implanté	50 mm² 300 <i>μ</i> m	11 keV	5.486 MeV (²⁴¹ Am)	Particules chargées
Barrière de surface	50 mm² 300 <i>μ</i> m	15 keV	5.486 MeV	Particules chargées
Si(Li)	300 mm² 5 mm	< 50 keV < 20 keV	5.486 MeV 975 keV (²⁰⁸ Bi)	Particules chargées
Si(Li) refroidi	25 mm² 5 mm	150 eV	5.9 keV (⁵⁵ Fe)	X de 1 à 30 keV

Détecteurs

Si&Ge

rsay

Détection des photons

1962 - 1983:

Détecteurs

Si&Ge

Les détecteurs Ge(Li) améliorent les résolutions en énergie d'un facteur 10 par rapport aux scintillateurs NaI (Tl)

Comparative pulse height spectra recorded using a sodium iodide scintillator and a Ge(Li) detector. The source was gamma radiation from the decay of ^{108m}Ag and ^{110m}Ag. Energies of peaks are labeled in keV.

Depuis les années 80 :

- Des cristaux de Ge de plus en plus purs (HPGe, High Purity Germanium)
- Le procédé de compensation au lithium a été définitivement abandonné. On réalise maintenant des jonctions sur des cristaux de HPGe de plus en plus volumineux
- Ces détecteurs nécessitent un refroidissement lors de leur utilisation (LN2)

 des géométries planaires et cylindriques coaxiales sont utilisées en fonction des photons à détecter (volumes de détection)

 des cristaux de gros volumes et de haute pureté peuvent être produits
 ex : 110mm de long, ø 98 mm, 800 cm³, 4.4 kg, |NA-ND| ~10⁹ cm⁻³ (impuretés résiduelles)

Forschungszentrum Jülich IKP

- Contact P⁺ : implantation de Bore (épaisseur 0.3 μ m)
- Contact N⁺ : diffusion de lithium (épaisseur :
 > 500 µm)
- Détecteurs de type P (plus volumineux mais plus sensible aux neutrons) ou de type N

Détecteurs Ge

N type Ge

Géométrie planaire

- Même structure et mêmes équations que pour le Si
- Détecteurs parfois segmentés : pistes ou pads de dimension de l'ordre du cm

Géométrie cylindrique

- · pour augmenter les volumes de détection
- essentiellement des détecteurs coaxiaux
- · la surface (open-ended) doit être passivée

• Particularité : il fonctionne à basse température <90K : azote liquide en général

• À température ambiante, la génération thermique est trop importante, le courant est élevé et le bruit statistique est trop fort.

- Nécessité d'avoir un cryostat, le cristal est sous vide
- Introduction de matière dans le parcours de la particule

Détection des X et des gammas ex : détecteur puits - ORTEC

Cap + « warm » electronics (preamp.)

ORTEC

Détecteur : 50 mm de long et diametre 50 mm

Les clovers ou trèfles

4 détecteurs dans le même cryostat

CLOVER EUROGAM

 \emptyset 50 mm, length 70 mm (EUROGAM type) Ø 50 mm, length 80 mm \emptyset 60 mm, length 90 mm (EXOGAM type) Ø 70 mm, length 40 mm (VEGA type)

Les coaxiaux segmentés

Pour la localisation des interactions

Détecteurs

Si&Ge

CLOVER DEUX SEGMENTS

SUPER CLOVER QUADRUPLE SEGMENTS Ensemble de 4 détecteurs de longueur 140 mm

Résolution globale à mi-hauteur : 2,3 keV à 1,33 MeV

Résolution à mi-hauteur des 9 segments : 3.5 keV à 1,33 MeV

MINIBALL Détecteur à 6 segments

Sur [®]Co Résolution à mi-hauteur par segment : 3,0 keV Résolution globale à mi-hauteur : 2,2 keV

32 SEGMENTS MSU

Sur ⁰Co	Résolution à mi-hauteur par segment Efficacité relative	: 2,9 ke\ : 75 %
	Ellicacite lelative	. 10 %

SUPER CLOVER QUATRE SEGMENTS Ensemble de 4 détecteurs de longueur 140 mn

Résolution globale à mi-hauteur : 2,6 keV à 1,33 MeV

Résolution à mi-hauteur des 16 segments : 3.2 keV à 1,33 MeV

Les clusters

Ensemble de détecteurs encapsulés

Le détecteur est mis sous vide dans une capsule puis connecté à son électronique froide avant d'être intégré dans son cryostat

Grappe CLUSTER pour EUROBALL (7 détecteurs GeHP encapsulés)

Section hexagonale - diam. 70 mm - haut. 78 mm Résolution FWHM : ≤ 2,3 keV Efficacité : ≥ 55% Epaisseur de paroi : 0,7 mm Distance Germanium - capsule : 0,7 mm.

Type de détecteurs	Géométrie	Résolution en énergie	Raie de calibration	Spécificité
HPGe Type N	10 à 100% (+ fenêtre Be)	1.80 à 2.65 keV	1.332 MeV (⁶⁰ Co)	γ de 3 keV à 10 MeV + neutrons
HPGe Type P	10 à 150%	1.80 à 2.40 keV	1.332 MeV	γ de 80 keV à 3 MeV
HPGe planaire	Épaisseur -> 25 mm	1.3 keV	662 keV (¹³⁷ Cs)	γ < 100 keV
Segmentés	Cluster (6 seg.) Clover (4 seg.) AGATA (36 seg.)	3 keV/segment 2 keV/segment 2 keV/segment	1.332 MeV	Tracking effet Doppler

Détecteurs

Si&Ge

rsay

Formation du signal

•Une particule chargée est ralentie dans le matériau et perd son énergie suivant différents processus (ionisation)

•Création de paires électron-trou dans le détecteur

•Séparation des paires sous l'action d'un champ électrique

 Migration des charges vers les électrodes : les électrons -> N, les trous -> P

•Collection et formation du signal

Détecteurs Réponse du détecteur Si&Ge Création Collection des +HT de paires charges

F

P+

ionisation

signal

 N^+

- Une particule chargée perd de son énergie via des collisions avec les atomes du réseau cristallin (ionisation). Le processus de perte d'énergie se retrouve dans la formule de Bethe-Bloch de pouvoir d'arrêt dE/dx
- Il faut adapter les épaisseurs de détecteurs aux parcours des ions (Si)
 - alpha @ 5.5 MeV ->~27 μm
 - ²⁰⁸Pb @ 1 GeV -> ~60µm
 - ⁵³Cr @ 747 MeV -> ~180 μm
 - proton @ 5 MeV -> ~216μm
 - ²⁰⁸Pb @ 6 GeV -> ~330µm
 - Electron @ 975 keV -> ~1.7 mm
 - proton @ 30 MeV -> 4.9 mm

- La création de paires électron-trou se fait de façon indirecte
- Les effets (section efficace) dépendent du Z du matériau :
 - Effet photoélectrique, (Z⁴ to Z⁵)
 - Diffusion Compton (Z)

Détecteurs

Si&Ge

- Création de paires, (Z^2)
- Ge (Z=32) plus efficace que Si (Z=14)
- Les détecteurs sont adaptés aux énergies des X et des γ
 - Si(Li) refroidis pour des X jusqu'à 100 keV
 - Ge pour des γ jusqu'à 10 MeV

- le déplacement d'une charge q entre 2 électrodes parallèles distantes de D induit un signal sur ces électrodes dQ = q dx/D
- et dans le circuit extérieur, un courant i = q v/D

- c'est donc le mouvement des charges qui induit un signal plutôt que les charges collectées. (Ramo - 1939)
- Résultat valable en présence de zones de charge d'espace (Cavalleri - 1963)

- Le mouvement des charges induit le signal i = qv/D
- Chaque porteur de charge induit un courant :
 - $i_{-} = -qv_{-}/D$ pour les électrons
 - $i_{+} = qv_{+}/D$ pour les trous
- Le courant total est la somme de toutes les contributions
- En pratique :
 - On exprime le champ électrique en fonction du type de détecteur F(x)
 - On écrit l'équation du mouvement x(t) à partir de $v=\mu F$
 - On calcule le courant i (†) à partir de Ramo
 - Puis la charge Q(t)
 - On évalue le temps total de collection
- Base des simulations

Pour une paire électron-trou

Faisceau entrant par la face avant (champ fort)

Détecteurs

Si&Ge

Signal for one pair created at ~27 μm
from front side (PN junction)
(distance equivalent to the range of 5.5 MeV alpha)

ρ =10 kΩ.cm e=300 μm Vdepl = 64V Vpol=2xVdepl

Ν

Collection time : electron : 10.8 ns hole : 1.8 ns

total : 10.8 ns

No rise time !

Signal pour une paire créée à ~27 μ m de la face avant (distance équivalente au parcours d'un alpha de 5.5 MeV)

Tout le long du parcours

- On « découpe » le parcours de l'ion en N tranches équivalentes
- Dans chaque tranche on calcule :
 - Le nombre de paires électron-trou créées : Np = $\Delta E/3.6$ (eV).
 - La mobilité de chaque porteur de charge : μ₊ et μ₋ (la mobilité dépend du champ électrique, mais aussi de l'orientation du cristal)
 - Le courant créé par le mouvement de chaque porteur de charge i, et i à partir du théorème de Ramo :

$$i_{\pm} = qv_{\pm}/d$$

On somme les contributions

- Exemple : alpha de 5.5 MeV dans le silicium (en face avant)
- Parcours : ~27 μm (SRIM)

Détecteurs

Si&Ge

Rmq : temps de collection = 32 ns

L.Lavergne, Du détecteur à la mesure Oléron, 18-25 juin 2009

ρ =10 kΩ.cm e=300 μm Vpol=64V=2xVdepl Détecteurs Si&Ge

Comparaison

- Elaborer un modèle valable pour les ions légers et les ions lourds.
- Tenir compte des effets de densité d'ionisation qui deviennent importants pour les ions lourds (effet plasma)

Exemples

- incident : plus l'ion est lourd, plus la densité est grande -> plasma
- Le temps de « plasma » : temps d'érosion du plasma, il dépend du champ électrique et de l'ion incident
- · La quantité de charge mesurée peut se révéler inférieure à celle attendue (défaut d'ionisation ou PHD « pulse height defect »)

Détecteurs Si&Ge lons lourds : l'effet « plasma »

migration (pour les ions légers) plasma (écrantage du champ électrique)

recombinaison des charges (E mesurée < E incidente)

La trace de l'ion dans le silicium est considérée comme un cylindre de rayon ~1 μ m et de longueur le parcours de l'ion (simulations)

Ex : données expérimentales

Détecteurs Si&Ge

30 ions détectés 3 ≤ Z ≤ 28 28 ≤ E ≤ 750 MeV 3 ≤ E/A ≤ 14 MeV

H.Hamrita, AZ-4pi

Dépendance avec l'orientation

L.Lavergne, Du détecteur à la mesure Oléron, 18-25 juin 2009

Détecteurs

Si&Ge

 La géométrie et le champ électrique sont plus complexes !

EXOGAM

- Vk électrodes
- Théorème de Shockley-Ramo : $i_k(t) = -q\vec{v}.\vec{E}_k(\vec{d}(t))$
- Calcul du potentiel et du champ de pondération (*weighting potential* et *weighting field*) : artifice de calcul -> E_k : rend compte du couplage géométrique entre la charge à une position donnée d et l'électrode k

Z.He, NIM A 463 (2001) 250-267

 potentiel 1 sur l'électrode de lecture et 0 sur toutes les autres, en l'absence de charge.

Les détecteurs Si à pistes

Fig. 17. Electric potential in an elementary cell of a SSD. The values of the geometrical parameters are: $d = 400 \,\mu\text{m}$, $p = 228 \,\mu\text{m}$, $w = 60 \,\mu\text{m}$, $h = 5 \,\mu\text{m}$.

Détecteurs

Si&Ge

Fig. 18. Drift line in a silicon cell. The geometrical parameters are $d = 400 \,\mu\text{m}$, $p = 228 \,\mu\text{m}$, $w = 60 \,\mu\text{m}$, $h = 5 \,\mu\text{m}$. The bias potential is $\phi_0 = 100 \,\text{V}$.

Fig. 19. Weighting potential of a strip. The cell used for computing the potential includes four neighbour strips. The geometrical parameters are $d = 400 \,\mu\text{m}$, $p = 228 \,\mu\text{m}$, $w = 60 \,\mu\text{m}$, $h = 5 \,\mu\text{m}$.

Exemple de potentiel, électrique, lignes de champ et weighting potential

NIMA 533 (2004) 322-343

- Notion de charge miroir, induite sur les pistes voisines
- Phénomène transitoire
- Utilisé pour la localisation sur les segments

NIM A 525 (2004) 188-192

Détecteurs Si&Ge

Les détecteurs Ge coaxiaux

segmentés

AGATA

SOL

Résumé

Les notions importantes dans la formation du signal

Identification des ions

- $E-\Delta E$, montage en télescope
- temps de vol
- · PSA

L.Lavergne, Du détecteur à la mesure Oléron, 18-25 juin 2009

Détecteurs

Temps de vol (TOF)

Identification en masse

$$E = \frac{1}{2}Av^{2} = \frac{1}{2}A(\frac{d}{t})^{2}$$
 $t = d\sqrt{\frac{A}{2E}}$

Il faut

- mesurer une différence de temps t (entre un start et un stop)
- un détecteur qui arrête l'ion qui dépose son énergie E
- une distance suffisamment adaptée
 d

- tracking gamma (projet AGATA)
- identification des ions avec un seul étage de détection car le signal du détecteur porte les informations en Z et A des ions (vs télescopes) : projet FAZIA
- moins de voies d'électroniques.
- les détecteurs doivent avoir une résistivité très homogène.

Préamplificateur de charge

Le détecteur -> capacité et source de courant -> source de bruit

Détecteurs

- En général la distribution est gaussienne
- Elle s'exprime par la largeur à mi-hauteur (LMH) de la distribution ou FWHM (Full width at half maximum) : LMH = 2.35 σ
- Exemple :

Spectre du ²³⁸Pu (5.155 MeV) dans un détecteur silicium (50 mm², 500 µm, -15°C)

LMH=7.8 keV

 $\Delta E/E = 0.15\%$

Distribution en énergie

- Facteurs qui affectent la résolution en énergie :
 - Statistique de création de paires :
 - N = E/ ω , σ = (F.N)^{1/2} , F = facteur de Fano ~0.1
 - Si : FWHM (keV)= 1.4 √E(MeV)
 - Ge : FWHM (keV) = 1.3 JE(MeV)
 - Pertes d'énergie dues aux :
 - Sources, cibles
 - Effets nucleaires
 - Fenêtres d'entrée et de sortie des détecteurs
 - Canalisation (orientation cristallographique)
 - Straggling en énergie
 - PHD.....

Détecteurs

- Bruit électronique dû aux :
 - Résistances, capacités, premier étage de préamplification

Calibration

kev/canal

- Quelques sources étalons
 - Alpha @ MeV :
 - ²³⁹Pu (5.155 MeV), ²⁴¹Am (5.486 MeV), ²⁴⁴Cm (5.806 MeV)

- Électrons de conversion:
 - ²⁰⁷Bi : 975 keV
- X:
 - ⁵⁵Fe : 5.9 keV
 - ²⁴¹Am : 56 keV
- Gamma:
 - 60Co: 1.332 MeV
 - ⁵⁷Co : 122 keV
 - ¹³⁷Cs : 662 keV

- Si et Si(Li) à température ambiante
- En général : i-V, C-V, FWHM (α @ 5.5 MeV, ²⁴¹Am et électrons de ²⁰⁸Bi)

```
Spectre \alpha :

<sup>238</sup>Pu, <sup>241</sup>Am, <sup>244</sup>Cm,

(5.155, 5.486, 5.805 MeV)

FWHM=15 keV,

Si 200 mm<sup>2</sup>, 300 \mum

i = 90nA

Vpol = 170 V
```


Détecteurs Ge si&Ge Caractérisation des détecteurs Ge

- Efficacité relative à 1.33 MeV, liée au volume du détecteur (23g de Ge -> ~1% efficacité relative)
 - ϵ (NaI) = 1.2 10⁻³
 - $\varepsilon_{rel} = \varepsilon(Ge)/\varepsilon(NaI)$
- Résolution en énergie

Spectre ⁶⁰Co (1173 et 1332 keV), LMH (1.332 MeV) = 1.9 keV Détecteur Ge, type N, 20% -3000 V

- Fournisseurs
 - Rapport P/C (pour ⁶⁰Co, entre 1040 et 1096 keV)
 - Forme de la distribution :
 - FW1/10M et FW1/50M par rapport à FWHM
 - Écart par rapport à une gaussienne

 La caractérisation des cristaux, scanning γ, temps de montée...-> base de données de signaux.

- 920MBq Cs-137 source
- · 60 sec per position
- · 1mm steps
- 1mm diameter collimator

Détecteurs Ge segmentés

L.Lavergne, Du détecteur à la mesure Oléron, 18-25 juin 2009

Détecteurs

- Radiation Detection and Measurement, Knoll G.F.
- Semiconductor Radiation Detectors, Lutz G.
- Gamma- and X-ray spectrometry with semiconductor detectors, Debertin K. and Helmer R.G.

 Merci à J.Arianer, L.Bardelli, S.Barlini, B.Borderie, E.Chevallier, H.Hamrita, R.Kirsch, P.Lévêque, N. Le Neindre, D.Mathiot, G.Poggi, G.Voltolini, N.Willis