Conception d'un détecteur

FOUVEZ-VOUS NOUS

EXPLIQUER SIMPLEMENT

COMPLIQUE

0. Rappels
1. Introduction
2. Généralités
3. Détecteurs

Interaction particule/matière (rappels)

15/06/2011

Interaction particule/matiere & Conception d

Interactions particules-matière

Particules sont détectées à travers leurs interactions avec la matière du détecteur

- Ionisation (dE/dx)
- Bremsstrahlung
- Effet Cherenkov
- Rayonnement de Transition

Effets perturbant la mesure

- Fluctuations de Landau
- Diffusion multiple
- Création de paires (e+/e-)

Interactions particules-matière

Ionisation (dE/dx) : Formule de Bethe-Bloch

 $-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right]$

15/06/2011

Interaction particule/matiere & Conception d

960

 \propto

3. Détecteurs

Cible fixe

• e,p,μ,ν... -> Matière

Collisionneur

e+/-, pp(bar) : énergie identique => détecteur symétrique

S

61.0

- ep : particules différentes => détecteur asymétrique
- e+/- : énergie différentes => détecteur asymétrique

Exemples

- Symétrique
 - LHC (Atlas, cms), FNAL (D0, CDF), LEP (ADOL)
 - On veut tout mesurer (Etmiss) => compromis sur la précision de mesure
- Asymétrique
 - LHC (Alice, Lhcb), SLAC(BaBar) HERA (H1,Zeus)
 - On sait ce qu'on cherche => mesure précise sur un angle solide donné

3. Détecteurs : symétrique vs Asymétrique

LHCB: asymétrique

ATLAS: symétrique

a 60

15/06/2011

3. Détecteurs

Paramètres significatifs (?) pour la détection

- Interactions particules-matière
 - Moyen de comprendre, différencier, mesurer...
 - Trace des particules (différentes selon m,charge,...)
 - Type du milieu (détecteur)

Mesures partielles et/ou destructives (pour parties)

Spécifiques à certaines particules (sous-détecteurs)

Séparation de charge : champ magnétique

- Mesure de l'impulsion pour les particules chargées
- +/- séparation / focalisation / nettoyage

Herméticité

- $\Psi \to \mu \nu : \nu$ (neutrino), contrôle (tant que possible) de énergie manquante (Etmiss)
- Moins vrai pour SK (mesure spécifique aux neutrinos)

61.0

3.Détecteurs: paramètres significatifs (?)

Longueur de Radiation

- X₀= Longueur caractéristique des pertes par radiation
 - Atténuation l'énergie par radiation : $E = E_0^{-x/x_0}$
 - Longueur sur la quelle un électron perd 1 / e de son énergie par bremsstrahlung

Longueur d' interaction

- λ = Longueur caractéristique d'interaction nucléaire
 - Libre parcours moyen d'un hadron entre 2 Interactions nucléaire

61.0

3. Détecteurs: paramètres significatifs (?)

Longueur de Radiation X_0

PDG: 27.24 $X0 \sim 716.4 A/(Z(Z + 1) \ln(287/\sqrt{Z}))$

« Transparence »

Longueur d'interaction λ

inergy

1000	Escaped Energy
2	non-EM Energ
1	Electromagnetic Energy
2	Invisible Energy

« absorption »

15/06/2011

Conception	d'un	détecteur	
conception	u un	actecteur	

Matériel	X_0 [cm]
Be	35.3
Carbon-fibre	~ 25
Si	9.4
AI	8.9
Fe	1.8
PbWO ₄	0.9
Pb	0.6

Matériel	λ [cm]
Si	45.5
Fe	16.8
Pb	17.1
1911	1030011

3. Détecteurs: paramètres significatifs (?)

6. ATOMIC AND NUCLEAR PROPERTIES OF MATERIALS

Table 6.1. Revised May 2002 by D.E. Groom (LBNL). Gases are evaluated at 20° C and 1 atm (in parentheses) or at STP [square brackets]. Densities and refractive indices without parentheses or brackets are for solids or liquids, or are for cryogenic liquids at the indicated boiling point (BP) at 1 atm. Refractive indices are evaluated at the sodium D line. Data for compounds and mixtures are from Refs. 1 and 2. Futher materials and properties are given in Ref. 3 and at http://pdg.lbl.gov/AtomicNuclearProperties.

Material	Ζ	A	$\langle Z/A \rangle$	$\begin{array}{l} {\rm Nuclear}\ ^a \\ {\rm collision} \\ {\rm length}\ \lambda_T \\ \{{\rm g/cm}^2\} \end{array}$	Nuclear ^a of interaction length λ_I {g/cm ² }	$\left\{ \frac{\mathrm{MeV}}{\mathrm{g/cm}^2} \right\}$	Radia {g/cn	tion length X_0 n ² } {cm}	$c ext{Density} \\ \{ ext{g/cm}^3\} \\ (\{ ext{g/}\ell\} \\ ext{for gas}) \end{cases}$	Liquid boiling point at 1 atm(K)	$\begin{array}{c} \text{Refractive} \\ \text{index } n \\ ((n-1) \times 10^6 \\ \text{for gas}) \end{array}$
H ₂ gas	1	1.00794	0.99212	43.3	50.8	(4.103)	61.28	d (731000)	(0.0838)[0.0899]		[139.2]
H ₂ liquid	1	1.00794	0.99212	43.3	50.8	4.034	61.28	^d 866	0.0708	20.39	1.112
D_2	1	2.0140	0.49652	45.7	54.7	(2.052)	122.4	724	0.169[0.179]	23.65	1.128 [138]
He	2	4.002602	0.49968	49.9	65.1	(1.937)	94.32	756	0.1249[0.1786]	4.224	1.024 [34.9]
Li	3	6.941	0.43221	54.6	73.4	1.639	82.76	155	0.534		
Be	4	9.012182	0.44384	55.8	75.2	1.594	65.19	35.28	1.848		2000
С	6	12.011	0.49954	60.2	86.3	1.745	42.70	18.8	2.265 ^e		
N_2	7	14.00674	0.49976	61.4	87.8	(1.825)	37.99	47.1	0.8073[1.250]	77.36	1.205[298]
O_2	8	15.9994	0.50002	63.2	91.0	(1.801)	34.24	30.0	1.141[1.428]	90.18	1.22 [296]
F_2	9	18.9984032	0.47372	65.5	95.3	(1.675)	32.93	21.85	1.507[1.696]	85.24	[195]
Ne	10	20.1797	0.49555	66.1	96.6	(1.724)	28.94	24.0	1.204[0.9005]	27.09	1.092[67.1]
Al	13	26.981539	0.48181	70.6	106.4	1.615	24.01	= 8.9 X	2.70		
Si	14	28.0855	0.49848	70.6	106.0	1.664	21.82	9.36	2.33		3.95
\mathbf{Ar}	18	39.948	0.45059	76.4	117.2	(1.519)	19.55	14.0	1.396[1.782]	87.28	1.233[283]
Ti	22	47.867	0.45948	79.9	124.9	1.476	16.17	3.56	4.54		
Fe	26	55.845	0.46556	82.8	131.9	1.451	13.84	1.76	7.87		07
Cu	29	63.546	0.45636	85.6	134.9	1.403	12.86	1.43	8.96		2
Ge	32	72.61	0.44071	88.3	140.5	1.371	12.25	2.30	5.323		
\mathbf{Sn}	50	118.710	0.42120	100.2	163	1.264	8.82	1.21	7.31		
Xe	54	131.29	0.41130	102.8	169	(1.255)	8.48	2.87	2.953[5.858]	165.1	[701]
W	74	183.84	0.40250	110.3	185	1.145	6.76	0.35	19.3		000000
Pt	78	195.08	0.39984	113.3	189.7	1.129	6.54	0.305	21.45		
Pb	82	207.2	0.39575	116.2	194	1.123	6.37	0.56	11.35		6 <u>616</u> 3
U	92	238.0289	0.38651	117.0	199	1.082	6.00	≈ 0.32	pprox 18.95		

15/06/2011

3. Détecteurs : remarque

15/06/2011

Vous mesurez cela

Conception d'un détecteur

3. Détecteurs : remarque

Vous mesurez cela

Mais la réalité est comme cela !!!

15/06/2011

Conception d'un détecteur

12 /31

3. Détecteurs: mesure partielle, destructive

Du point d'interaction vers l'extérieur du détecteur

Trajectographie : détecteurs « Transparents »

- Mesure des particules chargées
 - mesure de la position du vertex (« peu » de perte d'énergie)
 - mesure de la trace et de l'impulsion (si champ magnétique)
 - identifier les particules : dE/dx ou rayonnement de transition ou de Cherenkov ou un temps de vol.

Calorimètres : détecteurs « massifs »

- Mesure des électrons, photons, hadrons
 - mesurer l'énergie des particules (+ id. du type)

Muons

- Identification des muons
 - Connexion avec le trajectographe : Alignement relatif des sous-détecteurs
 - Mesure de l'impulsion si champ magnétique

Remarque:

- Énergie manquante => ${f V}$
- Ou mauvaise estimation de l'herméticité 15/06/2011 Concep

61.0

3. Détecteurs: mesure partielle & destructive

Réponse schématique d'un détecteur (dans un collisionneur)

Trace laissée ds le détecteur

Gerbe (électromagnétique ou hadronique)

15/06/2011

1.6

3. Détecteurs: champ magnétique

- $F = q v \times B = q/\gamma m P \times B$
 - P ~ 0.3 B R (P en GeV, B en Tesla, R en mètre)
 - Intégrale de champ
 - Solénoïdal
 - Constant sur une grande partie de son volume
 - trajectographie « simplifiée »
 - pp(bar): ok Plan transverse (R ϕ) (E beam mal connu!)
 - Pouvoir diminue qd on se rapproche de l'axe
 - « Nettoyage » des traces chargées de faible impulsion
 - Toroïdal
 - Champ moins homogène
 - Volume potentiel plus grand
 - · Intégral de champ +/- constant vers l'avant

OFF	ON
4.9 M	2.7 M
1.2 M	880 k
230 k	190 k
	OFF 4.9 M 1.2 M 230 k

ATLAS track statistics since Sep 2008

3. Détecteurs: champ magnétique

- Permet la mesure de l'impulsion des trace chargées
- La comparaison +/-

3. Détecteurs: champ magnétique Solénoïde CMS

3. Détecteurs: champ magnétique

Solénoïde & toroïde

15/06/2011

3. Détecteurs: champ magnétique

Intégrale de Champ

a (60

3. Détecteurs: herméticité

Collisionneur

- Mesure de l'énergie totale (transverse si pp)
 - Permet la détermination de l'énergie manquante
 - W-> μ V: le muon peut être identifié, le neutrino seulement
 - déduit de la compréhension de l'événement et du détecteur
 - Simulation indispensable !
- S'approcher le plus possible de 4π
 - Cylindre + bouchon (disques)
 - Problème à la transition cylindre/bouchon : Alignement
 - Estimation précise de l'angle solide (tube faisceau!)

61.0

G

3. Détecteurs : exemples

Collisionneur

ATLAS: Jet, Énergie manquante, muon (« standalone »)

CMS: mesure électron/photon trajectographie muon

15/06/2011

Conception d'un détecteur

21 /31

 $\alpha (\phi)$

3. Détecteurs : exemples

Collisionneur	ATLAS (7 ktons)	CMS (12.5 ktons)
INNER TRACKER	 Silicon pixels + strips TRT with particle identification B = 2T σ(p_T) ~ 3.8% (at 100 GeV, η = 0) 	 Silicon pixels + strips No dedicated particle identification B = 4T σ(p_T) ~ 1.5% (at 100 GeV, η = 0)
MAGNETS	 4 Magnets Solenoid + Air-core muon toroids Calorimeters outside solenoid field 	1 MagnetSolenoidCalorimeters inside field
EM CALORIMETER	 Pb / Liquid Ar sampling accordion σ(E) ~ 10-12%/√E ⊕ 0.2-0.35% Longitudinal segmentation Saturation at ~ 3 TeV 	 PbWO₄ scintillation crystals σ(E) ~ 3-5.5%/√E ⊕ 0.5% No longitudinal segmentation Saturation at 1.7 TeV
HAD CALORIMETER	• Fe / Scint. tiles (EC: Cu-liquid Ar) • $\sigma(E) \sim 45\% / \sqrt{E} \oplus 1.3\%$ (Barrel)	 Cu (EC: brass) / Scint. tiles Tail catchers outside solenoid σ(E) ~ 100%/√E ⊕ 8% (Barrel)
MUON	• Drift tubes & CSC (fwd) + RPC/TGC • $\sigma(p_T) \sim 10.5\% / 10.4\%$ (1 TeV, $\eta = 0$) (standalone / combined with tracker)	• Drift tubes & CSC (EC) + RPC • $\sigma(p_T) \sim 13\% / 4.5\%$ (1 TeV, $\eta = 0$) (standalone / combined with tracker)
15/06/2011	Conception d'un détecteur	22 /3

Simulation

- Pas mesure possible sans comparaison data/mc
- La plupart des phénomènes mesurés peuvent provenir
 - D'autres phénomènes physiques
 - De la mauvaise connaissance de l'appareil
 - De problèmes électroniques
 - De programme de reconstruction imparfait
- Génération, digitisation, simulation

Data/MC

• Recherche W'

135

The highest momentum muon has a pT of 653 GeV and an n of 0.99. The subleading muon has a pT of 646 GeV and an n of -0.85. The invariant mass of the pair is 1844 GeV

15/06/2011

Conception d'un détecteur

28 / 31

3. Détecteurs : Environnement

ATLAS Flux de neutrons

(1 MeV n_{eq}/cm²/yr)

3. Détecteurs : Services

Ne pas négliger les problèmes liés aux services

- Récupération du signal (fils, fibres,...)
- Alimentation électrique, gaz,...
- Refroidissement

Estimation de la puissance dispensée par l'électronique

15/06/2011

Conception d'un détecteur

Résumé

- ⁻ Électron & γ : Calorimètre (elec)
 - -+Trajectographe pour l'électron

660

- Muon : Tracjectographe
 - –+info calo
- Hadron(k,π,p,n,λ) : Calorimètres (elec + Hadronique)
 Jets
 - : Énergie manquante
 - Herméticité