Formation IN2P3 « Du détecteur à la mesure » Mai 2013 - Fréjus

LES DÉTECTEURS POUR L'ASTRONOMIE DES HAUTES ÉNERGIES – INTRODUCTION

Aline Meuris – CEA/Irfu aline.meuris@cea.fr

L'ASTRONOMIE DES HAUTES ÉNERGIES

o Spectre électromagnétique

- Théorie corpusculaire : photon d'énergie **E** = **h**. v = **h**.c / λ
- Unité : électron-volt E = q.V = 1,6.10⁻¹⁹ J = 1 eV

QUELQUES QUESTIONS D'ASTROPHYSIQUE

• Les lois de la relativité générale testée dans les trous noirs

- Observable : Élargissement Doppler des raies du fer
- Besoins : Spectroscopie haute résolution à 6-7 keV
- L'origine du fond diffus X
 - Observable : Sources
 - Besoins : imagerie, sensibilité de détection

QUELQUES QUESTIONS D'ASTROPHYSIQUE

• Le champ magnétique dans les objets compacts

- Observable : Émission synchrotron (rayonnement polarisé)
- Besoins : Polarimétrie X et gamma

• La production d'éléments lourds dans les restes de supernovae

- Observable : Raies de décroissance radioactive du titane 44
- Besoins : Spectro-imagerie à 70 keV

QUELQUES QUESTIONS DE PHYSIQUE SOLAIRE

- La libération d'énergie dans le milieu interplanétaire lors des éruptions solaires
 - Observable : rayonnement thermique et d'accélération des électrons
 - Besoins : spectro-imagerie X, comptage rapide

PLAN ET OBJECTIFS DU COURS

o Partie 1 (Vendredi 8h30-10h) : Physique des détecteurs

- Comment le rayonnement X et gamma peut être collecté et détecté ?
- Quelles informations du ciel peuvent être mesurées ?
- Quelles sont les limites des détecteurs actuels ?

o Partie 2 (Samedi 8h30-10h) : Ingénierie des détecteurs

- Comment conçoit-on un instrument (chaîne de détection) spatial ?
- Quelles sont les contraintes de développement d'une mission spatiale ?
- Quelles sont les réalisations du moment ?

- Les autres cours de l'école utiles pour mieux comprendre ce cours :
 - Détecteurs semiconducteurs
 - Détecteurs bolométriques refroidis
 - Electronique de lecture

Formation IN2P3 « Du détecteur à la mesure » Mai 2013 - Fréjus

A. MEURIS

Formation IN2P3 – Du détecteur à la mesure

LES DÉTECTEURS POUR L'ASTRONOMIE DES HAUTES ÉNERGIES – PARTIE 1

- A- Interaction lumière-matière
- **B-** Familles de détecteurs

- C- Techniques d'imagerie
- D- Techniques de mesure de la position
- **E- Les enjeux technologiques actuels**

INTERACTION LUMIÈRE-MATIÈRE

Effet photoélectrique Diffusion Compton Effet de paire

9

A. MEURIS

EFFET PHOTOÉLECTRIQUE

- Absorption totale du photon et libération d'un photo-électron d'énergie cinétique $E_c = E_0 E_L$
- O L'énergie E_c est transférée à d'autres atomes qui ionisent à leur tour
 → création d'un nuage de charges libres
- L'atome se désexcite et libère l'énergie E_L restante.

DIFFUSION COMPTON

- Conversion de l'énergie du photon en énergie de masse et en énergie cinétique
 - Création d'une **paire électron-positon** si $E_0 > 2.mc^2$ (1,022 MeV)
- L'électron et le positon perdent leur énergie progressivement leur énergie dans le milieu.
- Le positon finit par s'annihiler avec un électron du milieu en émettant
 2 photons de 511 keV dans des directions opposées.
 - Ces photons s'échapperont ou réagiront par effet photoélectrique ou Compton.

SECTIONS EFFICACES

- Définition : surface apparente de la particule cible pour rendre compte de la probabilité d'interaction avec le photon.
- Expression : dépend du numéro atomique Z du matériau.

• Section efficace totale d'un atome

•
$$\sigma_{tot} = \sigma_{photo} + Z.\sigma_{c} + \sigma_{pair}$$

LES FAMILLES DE DÉTECTEURS

Les détecteurs à ionisation Les scintillateurs Les semiconducteurs

Les bolomètres

LES DÉTECTEURS À IONISATION : PRINCIPES

- Principalement des gaz (He, Ar, CH_4 ...) : chambres à ionisation
- Détection directe des électrons et ions d'ionisation (spectroscopie)

- La segmentation de l'anode et la mesure des temps d'arrivée permet de 0 reconstituer des trajectoires des photoélectrons (imagerie, polarimétrie)
- *Gaz Electron Multiplier* (1997, Sauli) : région de fort champ électrique pour 0 déclencher un phénomène d'avalanche créant un courant suffisamment élevé pour l'électronique.

A. MEURIS

• Chaîne de mesure :

effet photoélectrique

LES DÉTECTEURS À IONISATION : EXEMPLE

• XPOL : X-ray polarimeter

- Développement pour IXO (International X-ray Observatory)
- Mélange de gaz He₂₀-DME₈₀ sous 1 bar
- 105600 pixels au pas de 50 μm
- Une voie de lecture par pixels (ASIC PIXI)

• Performances

- Sensibilité de polarisation : 1 % MDP (1 mCrab, 100 ks)
- Résolution angle polarisation : 2° (1mCrab, P=10%)
- Résolution en énergie : 20% à 6 keV

Plate-forme instrumentale

Fenêtre

GPD

béryllium

LES SCINTILLATEURS : PRINCIPES

o Chaîne de mesure

- 1. Conversion de l'énergie incidente en lumière visible ou UV.
 - L'atome excité par l'absorption du rayonnement se désexcite en émettant des photons de fluorescence (10 ps) ou phosphorescence (>1 μs).
- Conversion des scintillations en impulsions électriques par un photomultiplicateur (PM) couplé en direct ou par un guide d'onde.
- 3. Détection et la mesure de l'énergie par l'électronique frontale.

Plaque pour le détecteur d'anticoïncidence de Simbol-X

Les 2 grandes familles de scintillateurs

Plastiques organiques

01

• Liquide scintillant (PBD, PBO, POPOP) dans solvant plastique solide.

- Signal très rapide (2-3 ns)
- Simple à fabriquer et mettre en œuvre
- o Système d'anticoïncidence

Cristaux inorganiques

 Alcalins avec impureté d'activation NaI(TI), CsI(Na) ou non alcalins Bi₄Ge₃O₁₂ (BGO)

- Grand pouvoir d'arrêt
- Signal intense → bonne résolution en énergie
- o Spectroscopie gamma

LA MESURE DES SCINTILLATIONS PAR DES PM

• Principe

- Conversion des photons en électrons par la photocathode
- Création d'électrons secondaires en cascade sur les dynodes

- Efficacité quantique de la photocathode typ. 20 e-/ph.
- Résolution temporelle < 1 ns
- Instabilité du gain (dérive, décalage)

LES SCINTILLATEURS : EXEMPLE

• GLAST Burst Monitor

- Champ de vue 8 sr
- Résolution spectrale : 12% FWHM à 511 keV
- Résolution temporelle : Temps mort 3 μs/cp

Paramètres	Nal	BGO
Nombre total	12	2
Surface	126 cm ²	126 cm ²
Epaisseur	1,27 cm	12,7 cm
Bande d'énergie	8 keV-1 MeV	150 keV-40 MeV

Modules de vol

Lancement de GLAST/FERMI en 2008

20

A. MEURIS

Formation IN2P3 – Du détecteur à la mesure

LES SEMICONDUCTEURS : PRINCIPES

• Structure de bande

- Les lacunes laissées par les électrons dans la bande de valence peuvent être considérés comme des charges positives appelés **trous**.
- La conduction dans la matériau est assuré par le mouvement des électrons dans la bande de conduction et celui des trous dans la bande de valence.

- Chaîne de mesure analogue aux gaz à ionisation
 - 1. Création de paires électrons-trous par effet photoélectrique.
 - 2. Dérive des électrons vers l'anode et des trous vers la cathode.
 - 3. Lecture du signal par l'électronique frontale.

LES SEMICONDUCTEURS : EXEMPLE D'INTEGRAL

Spectromètre SPI

ISGRI pour l'imageur IBIS

	Paramètres	SPI	ISGRI
	Semiconducteur	Ge haute pureté	CdTe
ļ	Nombre de détecteurs	19	16384
	Surface totale	500 cm ²	2600 cm ²
	Température	85 K	270 К
	Bande d'énergie	18 keV-8 MeV	20 keV-1 MeV
	Résolution en énergie	0,17 % à 1,33 MeV	8 % à 122 keV

Lancement INTEGRAL en 2001

A. MEURIS

Formation IN2P3 – Du détecteur à la mesure

LES BOLOMÈTRES : PRINCIPES

- O Bolomètre : tout instrument montrant un excès de température causé par l'absorption d'une particule incidente → nécessite un refroidissement < 1 K : on parle de microcalorimètre cryogénique
- Chaîne de mesure classique
 - a. Conversion de l'énergie du photon en impulsion de température par l'absorbeur.
 - b. Conversion par la thermistance en contact en impulsion électrique détectable.
 - → Limitation en taux comptage car désexcitation très lente (ms).

LES BOLOMÈTRES : RÉALISATIONS

TES (transition edge sensor)

- Thermomètre supraconducteur
 - Lorsque la température augmente, il passe à l'état de conduction normale → brusque chute de courant détectable.

- Détecteur sensible (Mo/Au)
- Complexité de lecture impédance mΩ, multiplexage par SQUID pour avoir une matrice de détection

MIS (metal insulator sensor)

- Thermomètre implanté sur silicium
 - Technologies microélectronique disponible pour la matrice
 - Electronique de lecture plus « classique » (cryogénique 4K)
- Complexité de l'absorbeur (tantale) et intrinsèquement plus lent

A. MEURIS

• X-ray spectrometer (XRS) pour Suzaku (Astro-E2)

- Absorbeur HgTe collé sur thermomètre Si
- Matrice de 6 \times 6 pixels de 624 μ m
- Refroidissement à 60 mK : N2 liq, He liq, ADR (adiabatic demagnetization refrigerator)

- Gamme d'énergie : 0,3 10 keV
- Résolution spectrale
 - 6 eV FWHM à 6 keV

Lancement de Astro-E2 en 2005

GAMMA

LES TECHNIQUES D'IMAGERIE X ET GAMMA

Critères de performances Les techniques pour l'astronomie (E < 10 MeV) Les techniques pour la physique solaire D'autres concepts d'imagerie pour les gammas E > 10 MeV

CRITÈRES DE PERFORMANCES DE L'OPTIQUE

o Résolution angulaire α

- Distance angulaire minimale entre 2 sources que le télescope sépare.
- Le détecteur doit avoir des pixels au moins 2 fois plus petits que le diamètre *d* de la PSF (théorème d'échantillonnage) : typ. 3-5 fois

• D'autant meilleure que la source est brillante $\beta = \frac{\alpha}{\sqrt{n_{\sigma}}}$

o Champ de vue abla

- Angle solide sous lequel le télescope observe le ciel (50% sensibilité sur l'axe).
- Le détecteur doit avoir une surface contenant tout le champ de vue.

o Surface efficace de collection A_{coll}

• Voir sensibilité

L'IMAGERIE DIRECTE AVEC DES MIROIRS

- o Focalisation des rayons X par des miroirs en incidence rasante
 - Configuration de Wolter I

 $\tan 4\theta = \frac{R}{f}$

 \mathbb{Z}

A. MEURIS

• Surface efficace d'un miroir

 $A_{coll} = \pi \eta_R^2 (f \sin \theta_C)^2$

- ${\rm \circ}~\eta_{\text{R}}$ réflectivité nécessite un polissage extrême
- θ_c angle critique au-delà duquel la réflectivité n'est pas totale, décroît avec l'énergie (0,25° à 20 keV ; 0,1° à 50 keV)

Miroir multi-coque

L'IMAGERIE INDIRECTE PAR MASQUE CODÉ

• Technique de collection et de localisation des rayons gamma

- La focalisation n'est pas possible à haute énergie.
- Système à masque codé : la source à l'infini projette sur le détecteur une « ombre » caractéristique de sa position dans le ciel.

 Les masques pseudo-aléatoire permettent de reconstruire par déconvolution la position des sources de manière unique en minimisant l'influence du bruit de fond

COMPARAISON DES PERFORMANCES

• Ordre de grandeur, valeurs typiques

Paramètres	Miroirs en incidence rasante	Masque codé
Bande d'énergie	0,2-10 keV	10 keV-10 MeV
Résolution angulaire	10 arcsec	10 arcmin
Précision de localisation	1 arcsec	Arcmin pour sources fortes
Champ de vue	1° Ø	20° × 20°
Surface efficace de détection	$PSF = 1 \text{ mm } \emptyset$	$A_{Det} \approx \frac{1}{2} A_{Coll} > 1000 cm^2$
Sensibilité	10 ⁻⁷ -10 ⁻⁸ ph.cm ⁻² .s ⁻¹ .keV ⁻¹ 0,1-1 μCrab	10 ⁻⁵ -10 ⁻⁶ ph.cm ⁻² .s ⁻¹ .keV ⁻¹ 0,1-1 mCrab

• Détectabilité

$$n_{\sigma} = \frac{F_{s} \cdot A_{Coll}}{\sqrt{F_{s} \cdot A_{Coll} + F_{B} \cdot A_{Det}}} \sqrt{T}$$

TECHNOLOGIES DES FUTURS MIROIRS

o Silicon Pore Optics

- Préparation de plaques de silicium nervurées (*ribbed plates*) de 1 mm d'épaisseur (polissage, revêtement réfléchissant).
- 2. Courbure et empilage des plaques sur un mandrin cylindrique \rightarrow structure à pore.
- 3. Assemblage de 2 structures en une approximation parabole-hyperbole \rightarrow module optique.
- Léger, rigide, peu coûteux (à partir de wafers commerciaux).
- Excellente résolution angulaire (5 arcsec à 1 keV, 15 arcsec à 30 keV).
- Surface efficace limitée à hautes énergies.

TECHNOLOGIES DES FUTURS MIROIRS

o Slumped Glass Optics

- Courbure du segment de verre : chauffage à 600°C et affaissement (*slumping*) sous son propre poids sur le mandrin super poli.
- 2. Revêtement multicouche pour augmenter les angles de réflexion à haute énergie (diffraction de Bragg).
- 3. Alignement et assemblage.
- Focalisation jusqu'à 80 keV
- Résolution angulaire 20 arcsec

substrat

Miroirs de NuSTAR (2013)

L'IMAGERIE INDIRECTE POUR LA PHYSIQUE SOLAIRE

• Transformée de Fourier de l'image par des collimateurs

- 1. Echantillonnage de l'image dans le domaine de Fourier
 - Les paramètres des grilles du collimateur donne la fréquence spatiale échantillonnée
 - Le détecteur placé au dessous du collimateur mesure le coefficient associé (comptage)
- 2. Reconstitution de la transformée de Fourier (interpolation)
- 3. Application de la transformée de Fourier inverse pour obtenir l'image

Résolution angulaire : p/D jusqu'à 1 arcsec dans la bande 1 keV – 1 MeV mais nécessite des sources fortes ou invariantes (et des détecteurs efficaces) pour être sensible.

AUTRES CONCEPTS D'IMAGERIE GAMMA

Caméra Compton (0,1-1 MeV)

- Diffusion Compton dans le détecteur 1 : mesures de E₁, x₁, y₁
- Absorption photoélectrique dans le détecteur 2 : mesures de E₂, x₂, y₂
- La cinématique Compton donne l'angle et l'énergie incidents.

 La distribution de l'angle ψ est non équiprobable si la source est polarisée.

Détection des photons E > 10 MeV

- 1. Conversion de l'énergie de photon en paires électron-positron.
- Reconstitution de la direction incidente par des détecteurs de position.
- 3. Mesure de l'énergie totale dans un calorimètre.

position (gaz ou semiconducteurs)

Calorimètre

LES TECHNIQUES DE MESURE DE LA POSITION D'INTERACTION

Détecteurs à électrodes segmentées Dispositifs à transfert de charge

DÉTECTEURS À ÉLECTRODES SEGMENTÉES

o Dépôt d'électrodes métalliques segmentées

- Tout le volume du détecteur est sensible.
- Le signal est induit principalement sur l'électrode la plus proche de l'interaction et du transit.

o Effet petits pixels

- Signal induit essentiellement par les charges proches de l'électrode.
- Connexion de l'électronique à l'anode pour collecter les électrons et masquer les trous de plus faible produit μτ.

• Double-sided strip detector

- Fine segmentation (10-100 μm)
- Connexion d'un large nombre de voies analogiques sur les bords.

HYBRIDATION : ENJEUX ET TECHNOLOGIES

- Assemblage du détecteur et de son électronique
- Etape critique pour la garantie des performances
 - Choix des matériaux et procédés pour un contact optimal (capacité, fiabilité)

Concept d'hybridation pour un imageur X dur à base de CdTe

• Flip-chip, polymer or indium bump bonding, wire bonding

HYBRIDATION DES DÉTECTEURS EN SILICIUM

- O Détecteur et électronique peuvent être intégrés sur le même *wafer* → système monolithique
 - Capacité d'entrée/100 → bruit électronique réduit à quelques électrons
- Difficultés technologiques
 - Substrats et standards de fabrication a priori incompatibles
 - Procédé double face pour les détecteurs
- Exemple : DEPFET (Depleted p-channel field effect transistor)

LES DISPOSITIFS À TRANSFERT DE CHARGES

Charge coupled device (CCD)

• Structure dérivée d'une structure MOS (métal-oxyde-semiconducteur) classique en divisant l'électrode métallique en bandes (strips).

• Mesure en 4 étapes

- 1. Détection des photons incidents par effet photoélectrique
 - Zone de déplétion < 10 μm
 - Collection possible par diffusion depuis la région non déplétée (efficacité faible)
- 2. Accumulation des charges dans la capacité MOS
 - Ajout d'une couche n pour s'éloigner des défauts de surface

LECTURE DES CCD

- Transfert des charges de proche en proche vers l'électronique frontale placée sur le substrat
 - Par pixel : Une électrode de collecte, et deux de barrière
 - Bandes p perpendiculaires aux électrodes pour éviter la diffusion des charges dans le plan (*channel stops*)
- 4. Lecture de l'information par l'électronique externe

A. MEURIS

LES

LES ENJEUX DES FUTURS DÉTECTEURS

• Microcalorimètre X

- Imagerie en évitant les couplages électriques et thermiques entre pixels
 - \rightarrow Développement d'électronique cryogénique

• Détecteurs X : Silicon active pixels sensors

Diminuer le temps mort de lecture →
 Développement de nouveau concept de lecture

• Détecteurs X-dur

 Hybrides 3D à base de CdTe pour une fine pixelisation et des performances spectrales ultimes → Développement d'électronique 2D

Bille intérieure d'indium

Plot intérieur d'entrée-sortie Trou traversant Plot extérieur d'entrée-sortie

Bille extérieure d'indium

Formation IN2P3 « Du détecteur à la mesure » Mai 2013 - Fréjus

A. MEURIS

LES DÉTECTEURS POUR L'ASTRONOMIE DES HAUTES ÉNERGIES – PARTIE 2

- A- Concevoir un instrument sensible
- **B- Choisir un détecteur performant**

43

- C- Répondre aux contraintes techniques
- D- Qualifier un instrument à l'environnement spatial
- E- Revue des développements passés, présents, futurs

LES CONTRAINTES D'OBSERVATION

• L'atmosphère absorbe les rayonnements X et gamma.

- Nécessité des télescopes spatiaux
- Contraintes de développement supplémentaires (fiabilité, ressources...)

COO

LES SPÉCIFICATIONS D'UN NOUVEL INSTRUMENT

Science

- Performances à garantir pour répondre à des questions de physique
 - Choix du concept d'imagerie
 - Choix du détecteur
 - Choix de l'électronique frontale

Technique

- Enveloppe allouée pour l'instrument (masse, puissance, volume, débit de données)
 - Architecture électrique
 - Architecture mécanique
 - Architecture thermique

Mission

- Contraintes de la mission (orbite, durée de vie)
 - Choix de technologies éprouvées
 - Stratégie de redondance
 - Essais et qualification

• Instrument « bon »

• Instrument « faisable »

• Instrument « fiable »

CONCEVOIR UN INSTRUMENT SENSIBLE

Définition de la sensibilité d'un télescope Facteurs de perte de sensibilité

46

A. MEURIS

- Sensibilité F_s dans une bande d'énergie : Flux de la plus faible source détectable.
 - Unité : photons.cm⁻².s⁻¹.keV⁻¹ ou erg.cm⁻².s⁻¹ ou crab.
- Une source est détectée si son flux est mesuré avec un niveau de confiance n_σ (3σ typ.) après un temps d'exposition T.

$$n_{\sigma} = \frac{S}{\sqrt{S+B}} \sqrt{T} = \frac{F_{S} \cdot A_{Coll}}{\sqrt{F_{S} \cdot A_{Coll} + F_{B} \cdot A_{Det}}} \sqrt{T}$$

- S et B taux de comptage de la source et du fond en coups.s⁻¹.
- Incertitude due à la statistique de Poisson et au modèle du fond.
- Le taux de comptage de la source dépend de la surface efficace de collection A_{coll}.
- Le taux de comptage du fond dépend de la surface efficace de détection A_{Det}.

ORIGINES DU FOND SUR UN DÉTECTEUR

- Fond cosmique X (*CXB : cosmic X-ray background*) : Photons X et γ provenant de la région du ciel observée mais pas d'une source identifiée
 - Modèles à partir d'observations précédentes
- Fond interne ou instrumental : particules secondaires provenant de l'interaction des protons cosmiques avec les matériaux du satellite
 - Peut être estimé par simulation Monte-Carlo (Geant4)
 - Exemple du fond du détecteur de haute énergie de Simbol-X

Blindage pour réduire le fond interne

Blindage passif

- Bloquer le passage des particules vers le détecteur par des matériaux denses (tantale, tunsgtène...)
 - Ces matériaux peuvent s'activer et produire des raies de fluorescence X vers le détecteur !
 - Solution : Sandwich de matériau

Blindage actif

- Détecter les particules passantes sans les bloquer
 - Le traitement électronique marque d'un véto les événements vus en coïncidence sur le détecteur du plan focal.

A. MEURIS

Formation IN2P3 – Du détecteur à la mesure

TEMPS MORT DE L'INSTRUMENT

- Durée pendant laquelle les événements provenant de la source astrophysique ne sont pas pris en compte.
 - Réduit le temps d'observation donc la sensibilité du télescope.
- Temps mort de lecture τ_L : blocage des chaînes de mesure pour la lecture des événements
- Temps mort d'anticoïncidence τ_c : fenêtre temporelle ouverte par le passage d'une particule dans le blindage actif
- **•** Temps de récupération τ_R de la chaîne Le passage d'une particule saturante

VA

CHOISIR UN DÉTECTEUR PERFORMANT

Efficacité de détection Rendement quantique Résolution spatiale Résolution spectrale Capacité de comptage Capacité de polarimétrie

51

A. MEURIS

EFFICACITÉ DE DÉTECTION : DÉFINITION

 $\eta_{P} = \frac{\text{Nombre de quanta ayant totalement interagi}}{\text{Nombre de quanta incidents}}$

Formation IN2P3 – Du détecteur à la mesure

EFFICACITÉ DE DÉTECTION : ORDRE DE GRANDEUR

	Gaz à ionisation	Scintillateurs		Semiconducteurs	
Détecteur	Ar	Vinyltoluène	Csl	Si	CdTe
Numéro atomique	18	12	53, 55	14	48,52
Masse volumique ρ (g/cm ³)	1,78 (1bar)	1,032	4,5	2,33	5,85
Coefficient μ/ρ d'absorption totale à 10 keV (cm²/g)	63,2	2,20	171	33,9	138
Epaisseur pour une efficacité totale de 90% à 100 keV	2,9 mm	6,2 mm	120 µm	2,5 mm	110 µm

GAIN DU DÉTECTEUR

- Généralement exprimé en sensibilité (inverse du gain) : énergie minimale pour produire un signal ε (eV)
- Gaz : énergie de création de paire électron-ion
- Semiconducteur : énergie de création paire électron-trou
- Scintillateur :
 - énergie de création de photon (anthracène 60 eV/photon)
 - Rendement quantique de la photocathode du PM = <u>Nb d'électrons produits</u>

Nb de quanta incidents

@300 K	Gaz à ior	nisation	Scintillateurs			Semiconducteurs	
Détecteur	He	Ar	Plastique	BGO	Bialkali PMT	Si	CdTe
Sensibilité ɛ	41 eV	26 eV	100 eV/ph	300 eV/ph	QE = 26 %	3,63	4,42
Gain@10keV	244 e-	385 e-	26 e-	8,7 e-		2754 e-	2262 e-

• Le gain augmente généralement avec la température.

Formation IN2P3 – Du détecteur à la mesure

RÉSOLUTION SPATIALE

- Plus petite différence mesurable de position (en 1,2 ou 3 dimensions) d'interaction dans le détecteur.
- Doit permettre d'échantillonner la tâche focale (PSF) du système optique pour ne pas dégrader la résolution angulaire du télescope.

• La résolution spatiale est limitée par des contraintes :

- Physiques : phénomène de diffusion des charges
- Techniques : procédé de pixellisation, nombre de chaînes de mesure
 - \circ pixellisation sur du silicium jusqu'à 15 μ m.
 - $_{\mbox{o}}$ pixellisation sur du CdTe jusqu'à 100 $\mu m.$

RÉSOLUTION SPECTRALE : DÉFINITION

• Plus petite différence d'énergie mesurable.

- Largeur à mi-hauteur d'une raie
 - FWHM : full width at half maximum
 - Pour une raie gaussienne FWHM = 2,35 σ

Gaz et semiconducteurs

• La statistique d'ionisation suit une loi de type Poisson avec un facteur dit de Fano.

$$\Delta E_{stat} = 2,35 \cdot \sqrt{F \cdot \varepsilon \cdot E_{\gamma}}$$

- ε énergie de création de paires
- A cela s'ajoute le bruit de l'électronique

$$\Delta E = \sqrt{\Delta E_{stat}^2 + \Delta E_{elec}^2}$$

Bolomètres

- Les fuites thermiques vers la source froide crée des variations d'énergie interne.
- A cela s'ajoute la sensibilité du thermomètre et le bruit Johnson

$$\Delta E = 2,35 \cdot \xi \sqrt{k_B T^2 C_T}$$

C capacité thermique totale

56

RÉSOLUTION SPECTRALE : ORDRE DE GRANDEUR

Spectroscopie X

• Résolution à 5,9 keV (Mn-Kα)

- Gaz : 885 eV (**15 %**)
- Si : **123 eV** (2%)
- TES : **3 eV** (0,05%)

Spectroscopie gamma

- Résolution à 1,33 MeV (Co60-γ)
 - Ge: 2 keV (0.15 %)
 - Nal : > 5 %
 - BGO : 10 %

A. MEURIS

Formation IN2P3 – Du détecteur à la mesure

CAPACITÉ DE COMPTAGE

• Nombre maximal d'événements détectable par unité de temps

• Dépend de toute la chaîne de mesure

- Temps de désexcitation du détecteur
- Temps de collection du signal (dérive des charges dans le champ électrique)
- Temps de filtrage de l'électronique frontale (pour minimiser le bruit)
- Temps de lecture/acquisition/traitement (taille du système)

• Ordre de grandeur

- Bolomètre TES : 10³ cps/s
- Gaz à ionisation : 10⁴ cps/s
- Semiconducteur : 10⁵ cps/s
- Scintillateur + PM : 10⁷ cps/s

A. MEURIS

Formation IN2P3 – Du détecteur à la mesure

59

CAPACITÉ DE POLARIMÉTRIE : PERFORMANCE

 Facteur de modulation μ₁₀₀: Amplitude de modulation μ
 lorsque la source est polarisée à 100%.

$$\mu = \frac{C_{\max} - C_{\min}}{C_{\max} + C_{\min}}$$

- Polarisation détectable minimale
 - n_{σ} niveau de confiance, S et B taux de comptage de la source et du fond, T temps d'observation

$$MDP = \frac{n_{\sigma}}{\mu_{100}} \sqrt{\frac{S+B}{T}}$$

Type de détecteur	Gaz à ionisation He-DME	Scintillateur Nal	Semiconducteur CdTe
Expérience	XPOL (Bellazini)	POLAR	POLCA (Da Silva)
Gamme d'énergie	2-10 keV	50-250 keV	100-400 keV
Facteur modulation	0,4 à 4 keV	0,4 à 150 keV	0,35 à 300 keV
MDP	1%, 100 ks		35 %

27

• Plusieurs familles de détecteurs pour plusieurs applications :

- Spectroscopie et imagerie X : semiconducteurs Si (CdTe),
- Spectroscopie X : microcalorimètre TES,
- Spectroscopie gamma : semiconducteur Ge (scintillateur Nal, Csl),
- Polarimétrie X : gaz à ionisation,
- Polarimétrie gamma : semiconducteur CdTe, scintillateur,
- Détecteur d'anticoïncidence : scintillateur plastique, BGO.

RÉPONDRE AUX CONTRAINTES TECHNIQUES

Architecture électrique Architecture mécanique et thermique

62

A. MEURIS

SCHÉMA D'UNE ÉLECTRONIQUE DE DÉTECTION

o Electronique frontale

- Mise en forme du signal pour rendre possible la mesure
- Au plus proche du détecteur, généralement analogique (analog front-end)
- ASIC (application specified integrated circuit)

o Electronique de lecture

- Acquisition des informations utiles (encodage)
- Contrôleur souvent réalisé avec un FPGA (field programmable gate array),

o Electronique de traitement

- Fonctions numériques complexes (digital processing)
- Microprocesseur : DSP (digital signal processor)

CHOIX D'UNE ÉLECTRONIQUE FRONTALE

- L'électronique n'est pas performante en soi mais couplée à un détecteur. Elle doit être choisie avec soin suivant les spécificités du système.
- Généralement intégrée dans un circuit microélectronique (ASIC).
- Quelques paramètres clés :
 - Nombre de voies analogiques
 - Gain (mV/fC)
 - Temps de filtrage (μs)
 - Charge équivalente de bruit (électrons rms)
 - Sensibilité à la capacité d'entrée
 - Sensibilité au courant de fuite
 - Consommation électrique
 - Principe de lecture (autodéclenché ou en continu)
 - Type de sortie (multiplexage, sorties en parallèle)
 - Tenue aux radiations (pour systèmes spatiaux)

Exemple : ASIC IDeF-X (CEA/Irfu/SEDI) pour lire 32 voies de CdTe

DÉFINITION DE L'ARCHITECTURE ÉLECTRIQUE

• En lien avec les observateurs qui définissent des cas scientifiques :

- Flux typique et maximal d'une source \rightarrow débit de données, consommation
- Caractéristiques de la source → possibilité de compression de données à bord
- Mode dégradé d'observation \rightarrow type de redondance

• En dehors de la chaîne de détection, il faut de la puissance pour :

- Le contrôle thermique du détecteur
- Le contrôle des mécanismes (roue de calibration, atténuateur, filtres)

Exemple de caméra X (SVOM/MXT)

- Puissance électrique pour la FEE : 10 W
- Puissance électrique pour le TEC : 8 W
- Puissance électrique pour le Moteur : 4 W

CHOIX DES MATÉRIAUX

- Compromis entre masse et efficacité de blindage
- Attention à l'activation des matériaux : raies de fluorescence X

Suite de l'exemple MXT

Masse: 10 kg
Dimension : inclue dans un cylindre de Ø 300mm

Choix blindage 30 mm Al Utilisation d'une roue qualifiée : alliage Al, Fe, Ti, Cu, Ni.

• Intérêt des simulations Geant 4 pour estimer le bruit de fond et optimiser la conception vis-à-vis des radiations

QUALIFIER LES TECHNOLOGIES À L'ENVIRONNEMENT SPATIAL

L'environnement mécanique L'environnement radiatif

67

LES CONTRAINTES MÉCANIQUES

- Le lancement
 - Chocs, vibrations
- L'environnement spatial
 - Variations thermiques : fatigue des matériaux
 - Panne des mécanismes, rupture
 - Radiations : particule ionisante ou énergétique
 - Vieillissement accéléré des détecteurs, panne des électroniques
 - Contamination : dépôt de particules, réactions de surface...
 - Dégradation des propriétés optiques
 - Micrométéorites, débris spatiaux

Particules Fe, r = 0,3 μ m ; v = 10 km/s cratères dans le silicium de 0,1 à 10 μ m

RADIATION : ORIGINES ET CONSÉQUENCES

• Effets cumulatifs

- Interaction d'électrons et de protons de plus de 100 keV (irruptions solaires, ceintures de radiation).
- Accumulation des charges dans les isolants (oxydes).
- Dégradation continue des paramètres électriques au cours du temps puis éventuellement perte de fonctionnalité.
- La dose cumulée s'exprime en rad.Si ; 100 rad = 1 J/kg.

• Effets singuliers

- Interactions des ions du rayonnement cosmique et des protons solaires ou des ceintures de radiation.
- Effets destructifs ou non pour les composants électroniques.

Ceintures intérieure et extérieure de Van Allen (10⁷ électrons.cm⁻².s⁻¹)

69

EFFET DES RADIATIONS SUR LES DÉTECTEURS

- Les effets transitoires peuvent se supprimer par comparaison de trames successives et mesure de l'énergie.
- Dose cumulée : les **particules non ionisantes** (neutrons) provoquent des défauts 0 cristallins (déplacement, lacunes) qui créent des pièges dans le gap des semiconducteurs.
 - Le **recuit** régulier des détecteurs (*annealing*) est une technique efficace.

Dégradation de la résolution spectrale dans les Ge-HP

Dégradation du CTE dans les CCD

EFFET DES RADIATIONS SUR L'ÉLECTRONIQUE CMOS

Effet de dose cumulée

- Effet de la dose cumulée sur les circuits CMOS
 - Variation de la tension de seuil des transistors
 - Apparition de courants parasites

Effets singuliers

• L'effet de l'interaction de la particule ionisante dépend de sa faculté à déposer de l'énergie dans la matériau.

$$LET = \frac{1}{\rho} \frac{dE}{dx}$$

- Latch-up : courant parasite entre les alimentations positive et négative court-circuit pouvant provoquer la destruction du composant.
- *Single event upset* : basculement d'un bit d'un registre
- Technique de **durcissement** pour rendre les cellules numériques immunes.

TOLÉRANCE DES COMPOSANTS

Propriété du circuit

 Sections efficaces de SEL et SEU (single event latch-up / upset) en fonction du LET (linear energy transfer)

• Peut se décrire par une courbe de Weibull avec un **seuil de LET.**

Probabilité de panne en orbite

- La convolution de la section efficace (cm²) par le spectre de LET (cm⁻².s⁻¹) donne un taux d'événements (s⁻¹)
 - garantit l'immunité aux latch-up
 - définit la fréquence de rechargement des registres

REVUE DES DÉVELOPPEMENTS PASSÉS, PRÉSENTS, FUTURS

Les détecteurs en vol Les détecteurs en fabrication Les détecteurs en développement

INSTRUMENT EPIC À BORD DE XMM (1999)

EUROPEAN PHOTON IMAGING CAMERA

• EPIC : 2 CMOS CCD et 1 pn-CCD

Pn-CCD : structure de double diode

 → déplétion complète sur 280 µm
 → efficacité 0,9 à 10 keV

7 détecteurs de 2,5 × 2,5 cm²

détecteur monolithique de 6 × 6 cm²

ENERGY (KEV)

Fe XVII

Restes de la supernova Tycho

Mg XI

00

counts/sec/kev

NORMALIZE

0.2

Centre galactique

0.5

C23

5

SOFT-GAMMA RAY DETECTOR

- o Caméra Compton
 - Diffusion Compton dans le silicium (32 couches)
 - Absorption photo-électrique dans le CdTe
 - Blindage actif : BGO + photo-diodes
 - Polarimétrie sur 50-200 keV
- Au total

ez

- 4 caméra Compton
- 150 kg
- 40-600 keV
- α = 8° à 100 keV (effet Doppler)
- Sensibilité 1 mcrab
- Sensibilité de polarimétrie 10 mcrab

INSTRUMENT MIXS POUR BEPICOLOMBO (2014)

MERCURY IMAGING X-RAY SPECTROMETER

- Macropixels : SDD + DePFET
 - SDD : large surface, faible capacité
 - DePFET : stockage dans la grille interne, lecture et reset à la demande
- Matrice de 64 × 64 macropixels

Lecture cyclique en ligne, mise en forme des colonnes en parallèle (6 μs)

A. MEURIS

20

Formation IN2P3 – Du détecteur à la mesure

INSTRUMENT STIX POUR SOLAR ORBITER (2017)

- 32 paires de collimateurs (grilles de tungstène) + 32 spectromètres à base de CdTe
- 5 kg, 5W, 200 bits/s de télémesure

- Les systèmes de détection pour l'astronomie de hautes énergies gamma sont généralement l'association de plusieurs détecteurs :
 - Si/CdTe pour une large bande spectrale
 - Plan focal/détecteur d'anticoïncidence
 - Détecteur à gaz + matrice de pixels Si (gaz pixel detector)
- La tendance pour les optiques est le développement de miroirs à haute résolution angulaire (10-20 arcsec) au-delà de 10 keV et des longueurs focales modérées (10 m).
 - Nécessite des détecteurs à petits pixels (100 μm) et de large surface.
- L'obtention des performances ultimes des détecteurs passent par la mise au point de procédés d'hybridation et le développement d'électronique frontale.

RÉFÉRENCES (1/2)

- Ouvrages
 - G. F. Knoll, Radiation Detection and Measurement, 3rd Ed, 1999.
 - W.R. Leo, Techniques for Nuclear and Particle Physics Experiment, Springer-Verlag, 1994.
 - G. Lutz, Semiconductor Radiation Detectors, Springer-Verlag, 1999.
 - A. Meuris, Etude et optimisation du plan de détection de haute énergie en Cd(Zn)Te de la mission spatiale d'astronomie X et gamma Simbol-X, Thèse de doctorat, 2009.

• Sites web

- IXO instruments: <u>http://constellation.gsfc.nasa.gov/technology</u>
- R&D Silicon devices: <u>http://www.hll.mpg.de/05_research/res_device-physics.html</u>
- <u>http://xmm.esa.int/external/xmm_user_support/documentation/technical/EPIC/index.shtml</u>
- <u>http://www-glast.stanford.edu/instrument.html</u>
- INTEGRAL intruments: <u>http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=31175</u>

RÉFÉRENCES (2/2)

- Papiers
 - F. Muleri et al., " Low energy polarization sensitivity of the Gas Pixel Detector", NIM A 584 (2008) 149-159.
 - T.A. Prince and G.J. Hurford, "Gamma-ray and hard X-ray imaging of solar flares «, Solar Physics 118 (1988) 269-290.
 - H. Tajima et al., Soft Gamma-ray Detector for the ASTRO-H mission", SPIE 7732 (2010).
 - P.A.J. de Korte, "Cryogenic imaging spectrometers for X-ray astronomy", NIM A 444 (2000) 163-169.
 - Atwood et al. " Design and initial test of the tracker-converter of the gamma-ray large area space telescope ", Astroparticle physics 28 (2007) 422-434.
 - Many others...
- Contributions
 - Philippe Laurent (APC): détecteur d'anticoïncidence de Simbol-X.
 - Stéphane Schanne (CEA/Irfu) et Jean-Pierre Roques (CNRS/CESR) : INTEGRAL/SPI.
 - Arnaud Claret (CEA/Irfu) : Cellule Radiations Spatiales au CEA/Irfu.
 - Olivier Gevin (CEA/Irfu) : Conception ASIC IDeF-X.
 - Frédéric Pinsard (CEA/Irfu) : Conception instrument MXT.
 - Olivier Boulade (CEA/Irfu) : CCD