La calorimétrie Techníques avancées

Vincent Boudry LLR, École polytechnique

École du détecteur à la mesure Roscoff, juin 2015

Plan

- Introduction
 - Les interactions des particules dans la matière
 - interactions hadronique, réponse en temps, ...
 - Les belles gerbes
 - Principe de la mesure en calorimétrie
 - calorimétrie électromagnétique & hadronique
 - mesure de la performance
- Techniques de base de détection
 - Optique : Scintillateurs & Čerenkov
 - Electronique en milieu condensé (Solide & Liquide)
 - Détecteurs Gazeux
 - Quelques exemples
 - ► Effets annexes, et considérations «pour ingénieurs»
- Techniques avancées, la pratique et le futur...
 - Quelques ruses...
 - Le futur de la calorimétrie : dual readout vs. particle flow.
 - ◆ ILC & CMS-HGCAL

Vincent.Boudry@in2p3.fr

Techniques d'amélioration de la mesure des gerbes hadroniques

Vincent.Boudry@in2p3.fr

Bilan énergétique d'une gerbe hadronique :

 $E = E_{\rm EM} + E_{\rm tr} + E_{\rm n} + E_{\rm nucl.} + E_{\rm fuites}$

•
$$E_{\rm EM} = \pi^{0}$$
 ~ 30%–60% à 10–200 GeV (f_{\rm EM} {
m ou} {
m F}_{
m 0})

- $E_{\rm tr} = \pi$ chargés & protons
- $E_{\rm n} = {\rm neutrons}$
- $E_{nucl.} =$ Energie de liaison nucl. (Binding energy) \rightarrow Energie perdue ou «invisible»

•
$$E_{ ext{fuites}} = \mu +
u$$
, ~1-2%

Vincent.Boudry@in2p3.fr

Voies d'amélioration

Comment corriger expérimentalement pour ces 2 composantes ?

red - e.m. component blue - charged hadrons

Voie « Passive » Purement matériel

Calorimètre à compensation

«Dual readout»

Voie « Active » **Matériel + logiciel** Granularité + algorithmes

Vincent.Boudry@in2p3.fr

e/h → 1 Calorimètres à compensation

• Réponse d'un calorimètre aux hadrons :

$$R_{h} = \varepsilon_{e}E_{e} + \varepsilon_{h}E_{h}$$
Rapport
= $(\varepsilon_{e}F_{\pi0} + \varepsilon_{h}(1-F_{\pi0}))E$ Rapport
e/h = $\varepsilon_{e}/\varepsilon_{h}$

E_e = Energie EM
 E_b = E_t + E_p
 ε_e = fraction d'énergie EM détectée
 ε_b = fraction d'énergie Hadronique détectée

Augmenter
$$\boldsymbol{\varepsilon}_{_{\rm h}}$$
 et/ou réduire $\boldsymbol{\varepsilon}_{_{\rm e}}$

Augmenter ε_h

Utilisation de ²³⁸U (U appauvri)

- ► $n + U \rightarrow Energie$
 - ♦ γ, n, ...

- Meilleurs résultats : ZEUS (U+Scint)
 - α ~ 35%, e/h ~ 1
- Inconvénient
 - ► Bruit Radioactivité (→ calib)
 - «Déchets radio-actif…»

Vincent.Boudry@in2p3.fr

Utilisation de capteurs riches en Hydrogène

- ▶ $n + H \rightarrow n + p$ (HE)
- Exp de L3
 - ▶ $U + CO_2 \rightarrow U + IsoButane : e/h 1.3 \rightarrow 0.6 !!!$

Diminuer ε

- Utilisation de radiateur à grand Z
 - σ (Photo-electrique) $\sim Z^4$
 - γ < 1 MeV capturés dans radiateur
- Ajout d'un fin filtre bas Z entre le radiateur et le senseur

(a) Carbon (Z = 6)experimental σ_{tot}

1 Mb

l kb

GRayleigh

Cross section (barns/atom)

Bilan compensation

- Ajustement :
 - (A,Z) radiateur
 Contenu en H du senseur
 temps d'intégration
 Vol Rad/Senseur.
- Temps d'intégration ↔ Machine
- Meilleurs compromis pour la mesure hadronique ≠ meilleurs pour le ECAL
 - ► ECAL homogène : e/h ≫ 1
 - ▶ Bon ECAL à échant. \Rightarrow mauvais volume pour compens.

Bon ECAL ou bon HCAL ?

I had a DREAM...

Un physicien anonyme

Vincent.Boudry@in2p3.fr

DREAM (Dual REAout Module) concept

- Lecture duale de l'énergie
 - Identification «hardware» de la composante EM = mesure de f_{EM}
 - Utilisation de la lumière Čerenkov produite par la partie EM de la gerbe

 $N_{traces} (e\pm) / MeV \gg$ $N_{traces} (hadrons) / MeV$

- lecture classique du dE/dx (fibres scintillantes)
- Lecture du même milieu par 2 fibres différentes
 ⇒ 2 e/h pour 1 même événement

Vincent.Boudry@in2p3.fr

Type de SpaCal {Spaghetti Calorimeter}

- Some characteristics of the DREAM detector
 - Depth 200 cm (10.0 λ_{int})
 - Effective radius 16.2 cm (0.81 λ_{int} , 8.0 ρ_M)
 - Mass instrumented volume 1030 kg
 - Number of fibers 35910, diameter 0.8 mm, total length $\approx 90~{\rm km}$
 - Hexagonal towers (19), each read out by 2 PMTs

Photo multiplicateurs

Vincent.Boudry@in2p3.fr

Comportement classique (évolution de f_{EM})

$$S = E \left[f_{\text{em}} + \frac{1}{(e/h)_{\text{S}}} (1 - f_{\text{em}}) \right]$$
$$Q = E \left[f_{\text{em}} + \frac{1}{(e/h)_{\text{Q}}} (1 - f_{\text{em}}) \right]$$

e.g. If
$$e/h = 1.3$$
 (S), 4.7 (Q)

$$\frac{Q}{S} = \frac{f_{\rm em} + 0.21 (1 - f_{\rm em})}{f_{\rm em} + 0.77 (1 - f_{\rm em})}$$

$$E = \frac{S - \chi Q}{1 - \chi}$$

with
$$\chi = \frac{1 - (h/e)_{\rm S}}{1 - (h/e)_{\rm Q}} \sim 0.3$$

les méta-matériaux (option homogène)

- Dual Readout avec un calorimètre quasi homogène
 - Fibres scintillantes denses avec des matériaux réagissant différemment
- Lecture complexe → double ou triple information 3D

Amélioration Algorithmiques (avec la granularité)

Vincent.Boudry@in2p3.fr

Agrégation («Clustering»)

- But : grouper les cellules proches
 - ► Mesure de dépôts localisés ↔ origine des particules
 - 1 cluster = 1 dépôt d'une particule ?
 - ► Autour de cellules «chaudes»...
 - Besoin d'une granularité suffisante
- Applications :
 - - Conservation du bruit proche : symétrique.
 par ex. : coupure à |Q_i| > 3 σⁱ_{noise}
 - ► Corrections :
 - Profil de gerbes
 - Fuites, Matériaux morts

Vincent.Boudry@in2p3.fr

Compensation par pondération (« weighting »)

- Optimisations du signal : forme & taille
 - ► Dans le ECAL : e & γ vs π 's (= particle ID) [par exemple fraction dans le $E_{ECAL}/(E_{ECAL}+E_{HAD})$.
 - Dans le HCAL : Repérerer les dépôts EM
 - ► densité en énergie

$$\rho_i = \frac{E_i}{Vol_i}$$

- Haut $\rho_i = EM$; bas $\rho_i = HAD$
 - Ajustement des poids par le MC

Vincent.Boudry@in2p3.fr

Compensation par pondération (« weighting ») AHCAL (3×3 cm² × 48

Amélioration de la résolution & de la linéarité

Vincent.Boudry@in2p3.fr

La calorimét

Energy flow & particle flow

Vincent.Boudry@in2p3.fr

Au-delà de la calorimétrie : le «particle flow»

- «Simplement» reconstruire toutes les particules
 & prendre la meilleure mesure possible ou combiner
 - Pour des particules individuelles :
 - ◆ a ~ 10⁻³—10⁻⁴ GeV⁻¹
 - $\blacklozenge~\alpha_{_{ecal}} \sim 20\%$; $\gamma_{_{ecal}} \sim 1\%$
 - $\alpha_{hcal} \sim 100\%$; $\gamma_{hcal} \sim 5\%$
- Physique à haute énergie ≡ jets, MET (énergie transverse manquante), т
 - Mesure pour des jets :

γ

Particle Flow Analysis : «Energy flow»

PFA au LEP : ALEPH

Utilisation de particle ID + SW compensation

PFA au Tevatron : CDF

H1 Hadronic flow.

Vincent.Boudry@in2p3.fr

Le «particle Flow» de CMS

- Lien entre objets reconstruits
 - traces, clusters, traces de muons
 - suivant la direction du vertex ou des traces
- 1 bloc ~ 1 particule
 - Comparaison des compatibilités «4D»
 - Spatiales
 - Energétique

CONTRACTOR

NUSCUIT

ZUL

CMS particle flow

- Reconstruction d'énergie manquante
 - recherche «exotique»

$$\overrightarrow{MET} = -\sum_{i=0}^{N} ec{E_{T}^{i}}$$

► Gain d'un facteur ~2 Signal → Gaussien

Vincent.Boudry@in2p3.fr

La calor

Matériel pour le Particle Flow (pour ILC/CLIC, CEPC, FCC, HL-LHC...)

M. Thompson

- Nouveau paradigme (Particle Flow Analysis)
 - ► 60% de chargés : mesure dans le tracker
 - 30% de «petits» γ : dans le ECAL avec 20%/ \sqrt{E}
 - ▶ 10% de hadron neutres (n, K⁰_L) dans le HCAL

 \Rightarrow Bien meilleure résolution !!

- Besoin d'une excellente granularité
- Logiciel sophistiqué

Vincent.Boudry@in2p3.fr

Une question de granularité

Performances du PFA (pour les jets)

- Le Particle Flow Analysis améliore toujours
 - ~Facteur 2 vs calo seul

%

 La résolution du HCAL, la granularité et les fuites jouent un rôle.

A Depend complètement du SW A

La calorimétrie à haute granularité

Vincent.Boudry@in2p3.fr

Paramètres ILC (~2027-28)

^{31/60}

Contrainte pour les détecteurs (ILD / SiD pour l'ILC)

e.g.

- Prédicat « de base »: sep of H \rightarrow WW/ZZ \rightarrow 4j
 - ► $\sigma_z/M_z \sim = \sigma_w/M_w \sim = 2.7\% \oplus 2.75\sigma_{sep}$

$\Rightarrow \sigma_{\rm E}/{\rm E} \text{ (jets)} < 3.8\%$

- ► Sign ~ S/ \sqrt{B} ~ (resol)^{-1/2} 60%/ \sqrt{E} → 30%/ \sqrt{E} ⇔ +~40% L
- Large TPC
 - Precision and low X₀ budget
 - ► Pattern recognition
- Précision par les détecteurs : vertex (Pixels) & Calo SET (strips)
 - Étiquetage des hadrons de b et c
- Large acceptance
- Fwd Calorimetry:
 - ► lumi, veto, beam monitoring

Vincent.Boudry@in2p3.fr

Une calorimétrie optimisée pour le particle flow : ILD, SiD & Calice

Collaboration CALICE

mostly ILD, SiD

Test de prototype

technologiques

Analogique & digital

 \cdot ILC, CLIC

• Physiques

Collisionneur e⁺e⁻ (FLC, JLC, TESLA) ILC : 0.5 — 1 TeV CLIC : 1 — 3 TeV

Vincent.Boudry@in2p3.fr

La calorimétrie – Roscoff 2015

Micro

megas

Augmentation de la granularité

	1. DCCU	11103 (711		
Détecteur	Anneaux	Nb Canaux	% Calo	% Tracking
OPAL	LEP	180 000	60%	40%
DELPHI	LEP	130 000	20%	60%
ALEPH	LEP	530 000	80%	15%
L3	LEP	100 000		
CDF	TEVATRON	150 000	40%	50%
D0	TEVATRON	120 000	50%	40%
H1	HERA	250 000	30%	70%
L3P	LHC	1 000 000	15%	85%
CMS	LHC	16 000 000	2%	98%
ATLAS	LHC	4 000 000	2%	98%
SDC	SSC	30 000 000	3%	97%
GEM	SSC	4 250 000	3%	97%
ILD	ILC	109	12–18%	82-88%

F. Decamps (ATLAS & CMS : chiffres Lol)

Calo : × 1000 !

Un calorimètre W-Si pour un collisioneur linéaire à électrons

De nombreux jets de particules serrées → forte densité du calorimètre → Motif Motif

Les détecteurs au Si sont compacts: car ~100 paires par µm épaisseur ~ 500µm → 50000 paires

Le calorimètre est mince: $24X_0$ pour ~20 cm en 40 couches Les gerbes sont étroites $R_M \sim 1$ cm

beaucoup de canaux de lecture, 100M extrême granularité : 5×5 mm² → Electronique enfouie

Très bonne efficacité de reconstruction
des photons dans un environnement chargéVincent.Boudry@in2p3.frLa calorimé

SKIROC : ECAL readout

- SKIROC2 : Silicon Kalorimeter Integrated Read-Out Chip
 - 64 canaux, AMS SiGe 0.35 µm, 70 mm²
 - Très grande gamme dynamique:
 - ◆ HG for 0.5-150 MIP, LG for 150-2500 MIP
 - Auto-déclenchement, Stockage Analogique (16 evts), Numérisation (12b), Etiquetage en temps (BC)
 - Token-ring ReadOut (Chainage)
 - Basse consomation (Power-Pulsing)
 - Testability at wafer level
- Front End boards crucial element

C detector with PCB ≈ 20 pF

Vincent.Boudry@in2p3.fr

Quelques événement (test en faisceau) dans le Si-W CALICE

Un μ ou un π

Un e- ou un y

2 e-

Un hadron (π) Vincent.Boudry@in2p3.fr Un hadron (avec composante EM) La calorimétrie – Roscoff 2015 hadron chargé & h. chargé ou µ

SiW ECAL : Pamela

Satellite mesure de Matière noire

AHCAL & SDHCAL : Fe-Scint & Fe-RPC

- 38 couches 2 cm acier + tuiles scint de 3mm × 3×3cm²
- 48 couche de 2cm acier + RPC 1,2mm × 1×1 cm² lecture digitale ou semi-digitale → 400 000 canaux

vincenc.bodary@inzpo.r

Tests en faisceau

- Validation technologique
 - ► électronique enfouie
 - ► refroidissement, power-pulsing ...
- test des performances de physique pure
- Amélioration des Monte-Carlo → PFA
- test des algorithmes

Calorimétrie digitale homogène

Vincent.Boudry@in2p3.fr

Calorimètrie (Semi)Digitale

Angular resolution ~0.5°

granularity 1.5-4.5 cm

Vincent.Boudry@in2p3.fr

La calorimétrie – Roscoff 2015

Csl4.5x13

Perpective de la très haute granularité

Imagerie calorimétrique

- \rightarrow le retour aux chambres à bulle ?
 - \rightarrow reconstruction de traces,
 - \rightarrow extrapolation des pertes
 - \rightarrow identification des types d'interaction
 - \rightarrow correction e/h

Prototype technologique de 1m³ du SDHCAL

Vincent.Boudry@in2p3.fr

La calorimétine Roscon

Avec ou sans neutrons ?

 \Leftrightarrow Capteurs sans ou avec H?

Faut-il privilégier la résolution brute ou faciliter la reconstruction ?

Vincent.Boudry@in2p3.fr

ttbar à 500 GeV \rightarrow Performance Calcul ?

Vincent.Boudry@in2p3.fr

Calorimétrie ultra-granulaire

Calorimètres U.G. 1000× granularité actuelle (CMS, ATLAS)

- Flux bien moindre, mais électronique intégrée

R&D nécessaire :

- Dimensionnement, Mécanique, Wafers, Electronique intégrée, VFE
- Construction & test de Prototypes : SiW ECAL, SDHCAL
- Placement dans le détecteur & Intégration
 Optimisation : Physique vs coût, services (PP, cooling)
 - Costing \rightarrow Ex Si-W ECAL

Particle Flow

CALICE

ILD

 Outils pour la PFA : Simulation Mokka (sim. détaillée,param.)
 Data Format (LCIO), Macro-Information MC, Digitiseurs, Event display, Reconstruction Tools

- Outils de reconstruction PFA :
 - Difficulté : perf en JER = HW \otimes SW

Simulation ILD

La calorimétrie – Roscoff 2015

Vincent.Boudry@in2p3.fr

nitaire. I module 1.1

> od de 1.2 ad the 23

eriste 8

O ariade oiteire 10 niteire I I odule 2.21 odule 2.3

sLM3.3) sLM1.3)

cooling

Vincent.Boudry@in2p3.fr

ILD SiW-ECAL R&D

R&D for "mass production" and QA

- Quality tests & preparation of large production (Fe)
- Modularity → ASU & SLABs
 - Choice of square wafers
 (≠ from hex: SiD, CMS HGCAL)

Numbers ($R_{ECAL} = 1.8 \text{ m}$, $|Z_{Endcaps}|=2.35 \text{ m}$) (likely to be reduced by 30–40%)

- 40 Barrel modules: 40 (as of today all identical)
- 24 Endcap Modules: 24 (3 types)
- 9600 Slabs = 6000 (B) + 3600 (EC)
 - many \neq lengths
- ~75K ASUs (1024 canaux chacun)
 - 300K Wafers (2500 m²)
 - 1.2M VFE chips
 - 77M Channels

Vincent.Boudry@in2p3.fr

1ere application : Le HGCAL de CMS

Vincent.Boudry@in2p3.fr

But de l'opération

Le défi de la haute luminosité au LHC

Phase 2
$$\sqrt{s_{pp}} = 13-14 \text{ TeV}$$
 $\int L dt = 3000 \text{ fb}^{-1}$
Run IV **2025**-203x HL-LHC

 $LS3 \equiv$ phase 2 upgrades

• Operate at 5 x 10^{34} cm⁻² s⁻¹ with 25 ns beam crossings (<PU> ~140)

Les HGCAL (bouchons avant)

Calorimétrie à échantillonage 3D dense et hautement granulaire inspiré de CALICE et adapté aux flux du HL-LHC.

Utiliser la topologie des dépôts et le capacités de tracking de la reconstruction PFA pour le trigger et l'analyse

HGCAL

 EE
 Cu-W / Si
 26 X₀ (1.5 λ)
 FH
 Brass / Si
 3.5 λ
 HE
 Cu / scint. tiles
 5 λ
 λ

The HGCAL Cells Geometry

Calorimétrie « 5D »

- Séparation Software des différentes contributions
- Réelle reconstruction « 5D »
 - ► 3D espace,
 - Energie & Temps
- Mesure en temps et Time-over-Threshold (TOT)

Vincent.Boudry@in2p3.fr

The HGCAL Mechanics (prelim)

Building technique inspired by the R&D for CALICE (ILC), e.g. large prototype + demonstrators of a cassette have been made at LLR (in Si+Pb/W) and at FNAL

The HGCAL Readout Modules (prelim)

1 "module" = 2×6 " Wafers

Vincent.Boudry@in2p3.fr

Planning and Milestones (prelim)

For the HGCAL which comprises the silicon-based ECAL and front HCAL

• 4 years $Q2 2015 \rightarrow Q2 2019$

R&D and Test Beams

• 4 years Q2 2019 \rightarrow Q3 2023

Construction

The HGCAL + BH must be ready for installation in early fall 2023 !

Résumé

- Dans les gerbes EM sont composées de photons et électron/positrons
 - Seuls les e[±] déposent leur énergie en **ionisant** (la plupart à basse énergie)
 - Elles sont de forme bien définie (un cœur + 1 halo) mesuré en X₀ et R_{molière} (1 X₀ ~ 1 cm)
 - Elles sont compactes (99% dans 30 X₀ et à 95% dans 2 R_M)
- Les gerbes hadroniques sont constitués de hadrons (p,n, π,...), fragments de fission
 - Elles sont de forme irrégulière, et de contenu très fluctuant
 - Elles sont contenues à 95% dans ~8λ_{int} en longeur et 1,5 λ_{int} latéralement 1 λ_{int} ~ 30 cm ~ 30 X₀.
 - ▶ Une fraction $f_{EM} \sim 30\% \pm 10\%$ (f(E)) de leur énergie est déposée sous forme de gerbes EM
- Les calorimètres estiment l'énergie par comptage de traces
 - Linéaires
 - Résolution : $\delta E/E = \alpha / \sqrt{E \oplus \beta}/E \oplus \gamma$
 - $\gamma \leftrightarrow$ inhomogénéités : domine à haute énergie
 - ◆ 3–20%/√E ⊕ 1% pour les ECAL ; 50–100%/√E⊕3-5% pour les HCAL

Résumé (suite)

- Il existe 2 type de calorimètres :
 - «homogènes» : meilleures résolutions, segmentation grossière, mécaniquement limités, prix élevé
 - à échantillonnage : moins bonne résolution, flexibilité mécanique & de segmentation
- Il existe de multiple technique de détections :
 - Collection de lumière : Scintillation et/ou Čerenkov + détecteur de photons
 - Collection de charges : Semi-conducteurs, liquides nobles, amplification gazeuse
- Amélioration matérielles des performances :
 - Compensation : compromis & doigté
 - ▶ Double lecture \Rightarrow correction de f_{EM}
- Amélioration logicielle (avec Segmentation)
 - ► **Clustering** ⇒ réduction du bruit ; Identification de particules, détermination de la direction
 - Améliorations SW
 - Pondération & Weighting
 - ◆ Particle Flow : résolution → segmentation

Vincent.Boudry@in2p3.fr

Remerciements & Emprunts

- Précédents cours de cette école
 - ► Isabelle Wingerter-Seez (Oléron 2009)
- Marzio Nessi (XI ICFA SCHOOL ON INSTRUMENTATION IN ELEMENTARY PARTICLE PHYSICS)
- Cours à EDIT-2011 (école instrumentation du CERN)
 - ▶ R. Wigmans, D. Fournier, F. Sefkow. M, Diemoz, ...
- Présentations à CALOR'2010, CHEF'2013
- Collègues ILC et CALICE
 - ▶ Henri Videau, Jean-Claude Brient, Riccardo Fabbri, Frank Simon, Manqi Ruan
- Collègues CMS
 - ► Yves Slrois, Ch. Ochando
- Cours de L. Marleau