Formation IN2P3 « Du détecteur à la mesure » Mai 2013 - Fréjus

A. MEURIS

LES DÉTECTEURS POUR L'ASTRONOMIE DES HAUTES ÉNERGIES – INTRODUCTION

Aline Meuris – CEA/Irfu aline.meuris@cea.fr

MON PARCOURS

• Thèse d'instrumentation spatiale au CEA/Irfu/Service d'Astrophysique (Saclay)

- Développement d'une caméra gamma miniature (Caliste) à base de semiconducteur CdTe pour la mission d'astronomie Simbol-X.
- Post-Doc au laboratoire de semiconducteurs du Max-Planck-Institut (Munich)
 - Développement d'un détecteur silicium APS (DEPFET) pour le *Wide field imager* de la mission « large » d'astronomie X de l'ESA (ATHENA).

• Physicienne instrumentaliste au CEA

- Ingénieur système pour le détecteur à base de CdTe du télescope X de Solar Orbiter (mission ESA pour vol 2018).
- Ingénieur système pour la caméra à base de pnCCD du télescope X à bord de la mission de sursauts gamma SVOM (lancement en Chine en 2021).

L'ASTRONOMIE DES HAUTES ÉNERGIES

o Spectre électromagnétique

- Théorie corpusculaire : photon d'énergie E = h. v = h.c / λ
- Unité : électron-volt E = q.V = 1,6.10⁻¹⁹ J = 1 eV

QUELQUES QUESTIONS D'ASTROPHYSIQUE

• Les lois de la relativité générale testée dans les trous noirs

- Observable : Élargissement Doppler des raies du fer
- Besoins : Spectroscopie haute résolution à 6-7 keV

• L'origine du fond diffus X

- Observable : Sources
- Besoins : imagerie, sensibilité de détection

QUELQUES QUESTIONS D'ASTROPHYSIQUE

• Le champ magnétique dans les objets compacts

- Observable : Émission synchrotron (rayonnement polarisé)
- Besoins : Polarimétrie X et gamma

• La production d'éléments lourds dans les restes de supernovae

- Observable : Raies de décroissance radioactive du titane 44
- Besoins : Spectro-imagerie à 70 keV

QUELQUES QUESTIONS DE PHYSIQUE SOLAIRE

- La libération d'énergie dans le milieu interplanétaire lors des éruptions solaires
 - Observable : rayonnement thermique et d'accélération des électrons
 - Besoins : spectro-imagerie X, comptage rapide

LES CONTRAINTES D'OBSERVATION

• L'atmosphère absorbe les rayonnements X et gamma.

- Nécessité des télescopes spatiaux
- Contraintes de développement supplémentaires (fiabilité, ressources...)

cea

A. MEURIS

PLAN ET OBJECTIFS DU COURS

o Partie 1 (Mardi 15h30 – 17h) : Physique des détecteurs

- Comment le rayonnement X et gamma peut être collecté et détecté ?
- Quelles informations du ciel peuvent être mesurées ?

o Partie 2 (Vendredi 9h-10h30) : Ingénierie des détecteurs

- Comment conçoit-on un instrument (chaîne de détection) spatial ?
- Quelles sont les contraintes de développement d'une mission spatiale ?

• Les autres cours de l'école utiles pour mieux comprendre ce cours :

- Détecteurs semiconducteurs
- Détecteurs bolométriques refroidis
- Electronique de lecture

Formation IN2P3 « Du détecteur à la mesure » Mai 2013 - Fréjus

A. MEURIS

Formation IN2P3 – Du détecteur à la mesure

Les détecteurs pour l'Astronomie des hautes énergies – Partie 1

- A- Interaction lumière-matière
- **B-** Familles de détecteurs
 - C- Techniques d'imagerie
- 10

INTERACTION LUMIÈRE-MATIÈRE

Effet photoélectrique Diffusion Compton Effet de paire

EFFET PHOTOÉLECTRIQUE

- Absorption totale du photon et libération d'un photo-électron d'énergie cinétique $E_c = E_0 E_L$
- O L'énergie E_c est transférée à d'autres atomes qui ionisent à leur tour
 → création d'un nuage de charges libres
- L'atome se désexcite et libère l'énergie E_L restante.

Formation IN2P3 – Du détecteur à la mesure

- Conversion de l'énergie du photon en énergie de masse et en énergie cinétique
 - Création d'une **paire électron-positon** si $E_0 > 2.mc^2$ (1,022 MeV)
- L'électron et le positon perdent leur énergie progressivement leur énergie dans le milieu.
- Le positon finit par s'annihiler avec un électron du milieu en émettant
 2 photons de 511 keV dans des directions opposées.
 - Ces photons s'échapperont ou réagiront par effet photoélectrique ou Compton.

• Exemple de la datation du vin en mesurant l'activité du Cs137 (662 keV) et du K40 (1461 keV) avec un détecteur Ge.

- Définition : surface apparente de la particule cible pour rendre compte de la probabilité d'interaction avec le photon.
- Expression : dépend du numéro atomique Z du matériau.

•
$$\sigma_{\scriptscriptstyle pair} \, {}^{\propto} \, Z^2$$

• Section efficace totale d'un atome

•
$$\sigma_{tot} = \sigma_{photo} + Z.\sigma_c + \sigma_{pair}$$

INTERAGIR... ET ENSUITE ?

• Dans un solide

- Interaction primaire (photoélectron)
- Interactions secondaires (transitions électroniques successives)
- Désexcitation par des interactions électrons-phonons (transfert d'énergie dans le réseau cristallin sous forme de vibration)
- Retour à l'équilibre des phonons

Les Familles de Détecteurs

Les détecteurs à ionisation Les scintillateurs Les semiconducteurs Les bolomètres

CLASSER LES DÉTECTEURS

• Dans un solide

22

- Interaction primaire (photoélectron)
- Interactions secondaires (transitions électroniques successives)
- Désexcitation par des interactions électrons-phonons (transfert d'énergie dans le réseau cristallin sous forme de vibration)
- Retour à l'équilibre des phonons

température liée à la variation d'énergie interne

CLASSER LES DÉTECTEURS

Microcalorimètre

(2) Mesure l'élévation de température liée à la variation d'énergie interne

LES DÉTECTEURS À IONISATION : PRINCIPES

- Principalement des gaz (He, Ar, CH_4 ...) : chambres à ionisation
- Détection directe des électrons et ions d'ionisation (spectroscopie)

• Chaîne de mesure :

- 1. Création de paires ions-électrons par effet photoélectrique
- 2. Dérive des charges sous l'effet du champ électrique vers l'électrode de collection
- **3.** Lecture du signal par l'électronique frontale

Applied voltage

- La segmentation de l'anode et la mesure des temps d'arrivée permet de 0 reconstituer des trajectoires des photoélectrons (imagerie, polarimétrie)
- Gaz Electron Multiplier (1997, Sauli) : région de fort champ électrique pour déclencher un phénomène d'avalanche créant un courant suffisamment élevé pour l'électronique.

A. MEURIS

Formation IN2P3 – Du détecteur à la mesure

LES DÉTECTEURS À IONISATION : EXEMPLE

• Gas Pixel Detector

 \mathbb{Z}

- Mélange de gaz He₂₀-DME₈₀ sous 1 bar
- GEM: gas electron multiplier
- Une voie de lecture par pixels de 50 μm
- Application pour la polarimétrie X : proposé pour IXO, POLARIS, XIPE

• Performances

- Sensibilité de polarisation : 1 % MDP (1 mCrab, 100 ks)
- Résolution angle polarisation : 2° (1mCrab, P=10%)
- Résolution en énergie : 20% à 6 keV
- Efficacité :

GPD

Plate-forme

Fenêtre

béryllium

instrumentale

Design pour IXO

Formation IN2P3 – Du détecteur à la mesure

LES SCINTILLATEURS : PRINCIPES

• Chaîne de mesure

- 1. Conversion de l'énergie incidente en lumière visible ou UV.
 - L'atome excité par l'absorption du rayonnement se désexcite en émettant des photons de fluorescence (10 ps) ou phosphorescence (>1 μs).
- 2. Conversion des scintillations en impulsions électriques par un **photomultiplicateur (PM)** couplé en direct ou par un guide d'onde.
- 3. Détection et la mesure de l'énergie par l'électronique frontale.

Plaque pour le détecteur d'anticoïncidence de Simbol-X

LES 2 GRANDES FAMILLES DE SCINTILLATEURS

Plastiques organiques

 $\mathbb{C}\mathbb{Z}$

• Liquide scintillant (PBD, PBO, POPOP) dans solvant plastique solide.

- Signal très rapide (2-3 ns)
- Simple à fabriquer et mettre en œuvre
- o Système d'anticoïncidence

Cristaux inorganiques

 Alcalins avec impureté d'activation Nal(Tl), Csl(Na) ou non alcalins Bi₄Ge₃O₁₂ (BGO)

- Grand pouvoir d'arrêt
- O Signal intense → bonne résolution en énergie
- o Spectroscopie gamma

LA MESURE DES SCINTILLATIONS PAR DES PM

- Principe
 - Conversion des photons en électrons par la photocathode
 - Création d'électrons secondaires en cascade sur les dynodes

- Efficacité quantique de la photocathode typ. 20 e-/ph.
- Résolution temporelle < 1 ns
- Instabilité du gain (dérive, décalage)

LES SCINTILLATEURS : EXEMPLE

• GLAST Burst Monitor

- Champ de vue 8 sr
- Résolution spectrale : 12% FWHM à 511 keV
- Résolution temporelle : Temps mort 3 μs/cp

Paramètres	Nal	BGO
Nombre total	12	2
Surface	126 cm ²	126 cm ²
Epaisseur	1,27 cm	12,7 cm
Bande d'énergie	8 keV-1 MeV	150 keV-40 MeV

Modules de vol

Lancement de GLAST/FERMI en 2008

A. MEURIS

Formation IN2P3 – Du détecteur à la mesure

LES SEMICONDUCTEURS : PRINCIPES

• Structure de bande

- Les lacunes laissées par les électrons dans la bande de valence peuvent être considérés comme des charges positives appelés **trous**.
- La conduction dans la matériau est assuré par le mouvement des électrons dans la bande de conduction et celui des trous dans la bande de valence.

- Chaîne de mesure analogue aux gaz à ionisation
 - 1. Création de paires électrons-trous par effet photoélectrique.
 - 2. Dérive des électrons vers l'anode et des trous vers la cathode.
 - 3. Lecture du signal par l'électronique frontale.

Les Semiconducteurs : Exemple d'INTEGRAL

Spectromètre SPI

ISGRI pour l'imageur IBIS

Paramètres	SPI	ISGRI
Semiconducteur	Ge haute pureté	CdTe
Nombre de détecteurs	19	16384
Surface totale	500 cm ²	2600 cm ²
Température	85 K	270 K
Bande d'énergie	18 keV-8 MeV	13 keV-200 keV
Résolution en énergie	0,17 % à 1,33 MeV	8 % à 122 keV

Formation IN2P3 – Du détecteur à la mesure

A. MEURIS

Lancement

INTEGRAL en 2001

Les Bolomètres : Principes

- O Bolomètre : tout instrument montrant un excès de température causé par l'absorption d'une particule incidente → nécessite un refroidissement < 1 K : on parle de microcalorimètre cryogénique
- Chaîne de mesure classique
 - a. Conversion de l'énergie du photon en impulsion de température par l'**absorbeur**.
 - b. Conversion par la thermistance en contact en impulsion électrique détectable.
 - → Limitation en taux comptage car désexcitation très lente (ms).

LES BOLOMÈTRES : RÉALISATIONS

TES (transition edge sensor)

- Thermomètre supraconducteur
 - Lorsque la température augmente, il passe à l'état de conduction normale → brusque chute de courant détectable.

- Détecteur sensible (Mo/Au)
- Complexité de lecture impédance mΩ, multiplexage par SQUID pour avoir une matrice de détection

MIS (metal insulator sensor)

- Thermomètre implanté sur silicium
 - Technologies microélectronique disponible pour la matrice
 - Electronique de lecture plus « classique » (cryogénique 4K)
- Complexité de l'absorbeur (tantale) et intrinsèquement plus lent

A. MEURIS

Les Bolomètres X : Exemple

• X-ray spectrometer (XRS) d'Astro-H

- Absorbeur HgTe collé sur thermomètre Si
- Matrice de 6 \times 6 pixels de 814 µm de côté
- Refroidissement à 50 mK : ⁴He, LHe, dADR (adiabatic demagnetization refrigerator)

- Gamme d'énergie : 0,3 12 keV
- Résolution spectrale
 - 6 eV FWHM à 6 keV

Lancement de Astro-H en 2016

LES TECHNIQUES D'IMAGERIE X ET GAMMA

Critères de performances Les techniques pour l'astronomie X et X-dur Les techniques pour la physique solaire D'autres concepts d'imagerie pour l'astronomie gamma

CRITÈRES DE PERFORMANCES DE L'OPTIQUE

o Résolution angulaire α

- Distance angulaire minimale entre 2 sources que le télescope sépare.
- Le détecteur doit avoir des pixels au moins 2 fois plus petits que le diamètre d de la PSF (théorème d'échantillonnage) : typ. 3-5 fois

• Précision de localisation β

D'autant meilleure que la source est brillante $\beta = \frac{\alpha}{\sqrt{2}}$

o Champ de vue Φ

- Angle solide sous lequel le télescope observe le ciel (50% sensibilité sur l'axe).
- Le détecteur doit avoir une surface contenant tout le champ de vue.

• Surface efficace de collection A_{coll}

Voir sensibilité

L'IMAGERIE DIRECTE AVEC DES MIROIRS

- o Focalisation des rayons X par des miroirs en incidence rasante
 - Configuration de Wolter I

 $\tan 4\theta = \frac{R}{f}$

• Surface efficace d'un miroir

 $A_{coll} = \pi \eta_R^2 (f \sin 4\theta_c)^2$

- ${\rm \circ}~\eta_{\text{R}}$ réflectivité nécessite un polissage extrême
- θ_c angle critique au-delà duquel la réflectivité n'est pas totale, décroît avec l'énergie (0,25° à 20 keV ; 0,1° à 50 keV)

L'IMAGERIE INDIRECTE PAR MASQUE CODÉ

- Technique de collection et de localisation des rayons gamma
 - La focalisation n'est pas possible à haute énergie.
 - Système à masque codé : la source à l'infini projette sur le détecteur une « ombre » caractéristique de sa position dans le ciel.

 Les masques pseudo-aléatoire permettent de reconstruire par déconvolution la position des sources de manière unique en minimisant l'influence du bruit de fond

COMPARAISON DES PERFORMANCES

• Ordre de grandeur, valeurs typiques

Paramètres	Miroirs en incidence rasante	Masque codé
Bande d'énergie	0,2-10 keV	10 keV-10 MeV
Résolution angulaire	10 arcsec	10 arcmin
Précision de localisation	1 arcsec	Arcmin pour sources fortes
Champ de vue	1° \varnothing	20° × 20°
Surface efficace de détection	$PSF = 1 \text{ mm } \emptyset$	$A_{Det} \approx \frac{1}{2} A_{Coll} > 1000 cm^2$
Sensibilité	10 ⁻⁷ -10 ⁻⁸ ph.cm ⁻² .s ⁻¹ .keV ⁻¹ 0,1-1 μCrab	10 ⁻⁵ -10 ⁻⁶ ph.cm ⁻² .s ⁻¹ .keV ⁻¹ 0,1-1 mCrab

• Détectabilité n

$$n_{\sigma} = \frac{F_{S} \cdot A_{Coll}}{\sqrt{F_{S} \cdot A_{Coll} + F_{B} \cdot A_{Det}}} \sqrt{T}$$

TECHNOLOGIES DES FUTURS MIROIRS

o Silicon Pore Optics

- Préparation de plaques de silicium nervurées (*ribbed plates*) de 1 mm d'épaisseur (polissage, revêtement réfléchissant).
- 2. Courbure et empilage des plaques sur un mandrin cylindrique \rightarrow structure à pore.
- 3. Assemblage de 2 structures en une approximation parabole-hyperbole \rightarrow module optique.
- Léger, rigide, peu coûteux (à partir de wafers commerciaux).
- Excellente résolution angulaire (5 arcsec à 1 keV, 15 arcsec à 30 keV).
- Surface efficace limitée à hautes énergies.

TECHNOLOGIES DES FUTURS MIROIRS

o Slumped Glass Optics

- Courbure du segment de verre : chauffage à 600°C et affaissement (*slumping*) sous son propre poids sur le mandrin super poli.
- 2. Revêtement multicouche pour augmenter les angles de réflexion à haute énergie (diffraction de Bragg).
- 3. Alignement et assemblage.
- Focalisation jusqu'à 80 keV
- Résolution angulaire 20 arcsec

Miroirs de NuSTAR (2013)

L'IMAGERIE INDIRECTE POUR LA PHYSIQUE SOLAIRE

• Transformée de Fourier de l'image par des collimateurs

- **1**. Echantillonnage de l'image dans le domaine de Fourier
 - Les paramètres des grilles du collimateur donne la fréquence spatiale échantillonnée
 Le détecteur placé au dessous du collimateur mesure le coefficient associé (comptage)
- 2. Reconstitution de la transformée de Fourier (interpolation)
- 3. Application de la transformée de Fourier inverse pour obtenir l'image

Résolution angulaire : p/D jusqu'à 1 arcsec dans la bande 1 keV – 1 MeV ! Mais champ de vue et sensibilité moins bons qu'un masque codé.

EXEMPLE DE SOLAR ORBITER/STIX (2018)

Formation IN2P3 – Du détecteur à la mesure

CAMÉRA COMPTON (0,1 – 1 MEV)

Principe d'imagerie

C22

- Diffusion Compton dans le détecteur 1 : mesures de E₁, x₁, y₁
- Absorption photoélectrique dans le détecteur 2 : mesures de E₂, x₂, y₂
- La cinématique Compton donne l'angle et l'énergie incidents.

 La distribution de l'angle ψ est non équiprobable si la source est polarisée.

Mise en œuvre dans Astro-H (2016)

- 4 caméra Compton avec chacune : 32 couches Si, 4 couches CdTe, blindage par scintillateur BGO
- $\alpha = 8^{\circ} a 100 \text{ keV}$ (effet Doppler)
- Sensibilité 1 mcrab
- Sensibilité de polarimétrie 10 mcrab

DÉTECTION DE PHOTONS GAMMA > 10 MEV

Principe d'imagerie

20

- 1. Conversion de l'énergie de photon en paires électron-positron.
- 2. Reconstitution de la direction incidente par des détecteurs de position.
- 3. Mesure de l'énergie totale dans un calorimètre.

Mise en œuvre dans FERMI (2008)

- Détecteur d'anticoïncidence : scintillateur plastique
- Feuilles de conversion pour produire des paires e-/e+ : tungstène (W)
- « Trackers » : silicium strip detectors. Au total 74 m² Si, 880 000 voies de lecture, 160 W
- Calorimètre : scintillateurs CsI

DÉTECTION DE PHOTONS GAMMA > 10 MEV

Principe d'imagerie

27

- 1. Conversion de l'énergie de photon en paires électron-positron.
- 2. Reconstitution de la direction incidente par des détecteurs de position.
- 3. Mesure de l'énergie totale dans un calorimètre.

Mise en œuvre dans FERMI (2008)

- Détecteur d'anticoïncidence : scintillateur plastique
- Feuilles de conversion pour produire des paires e-/e+ : tungstène (W)
- « Trackers » : silicium strip detectors. Au total 74 m² Si, 880 000 voies de lecture, 160 W
- Calorimètre : scintillateurs CsI

Formation IN2P3 « Du détecteur à la mesure » Mai 2013 - Fréjus

A. MEURIS

Les détecteurs pour l'astronomie des hautes énergies – Partie 2

- A- Concevoir un instrument sensible
- B- Choisir un détecteur performant

45

- C- Répondre aux contraintes techniques
- D- Qualifier un instrument à l'environnement spatial

PLAN ET OBJECTIFS DU COURS

o Partie 1 (Vendredi 8h30-10h) : Physique des détecteurs

- Comment le rayonnement X et gamma peut être collecté et détecté ?
- Quelles informations du ciel peuvent être mesurées ?
- Quelles sont les limites des détecteurs actuels ?

o Partie 2 (Samedi 8h30-10h) : Ingénierie des détecteurs

- Comment conçoit-on un instrument (chaîne de détection) spatial ?
- Quelles sont les contraintes de développement d'une mission spatiale ?
- Quelles sont les réalisations du moment ?

LES SPÉCIFICATIONS D'UN NOUVEL INSTRUMENT

Science

- Performances à garantir pour répondre à des questions de physique
 - Choix du concept d'imagerie
 - Choix du détecteur
 - Choix de l'électronique frontale

Technique

- Enveloppe allouée pour l'instrument spatial (masse, puissance, volume, débit de données)
 - Architecture électrique
 - Architecture mécanique
 - Architecture thermique

Mission

- Contraintes de la mission (orbite, durée de vie)
 - Choix de technologies éprouvées
 - Stratégie de redondance
 - Essais et qualification

- Instrument « bon »
- Instrument « faisable »
- Instrument « fiable »

CONCEVOIR UN INSTRUMENT SENSIBLE

Définition de la sensibilité d'un télescope Facteurs de perte de sensibilité

- Sensibilité F_s dans une bande d'énergie : Flux de la plus faible source détectable.
 - Unité : photons.cm⁻².s⁻¹.keV⁻¹ ou erg.cm⁻².s⁻¹ ou crab.
- Une source est détectée si son flux est mesuré avec un niveau de confiance n_σ (3σ typ.) après un temps d'exposition T.

$$n_{\sigma} = \frac{S}{\sqrt{S+B}} \sqrt{T} = \frac{F_{S} \cdot A_{Coll}}{\sqrt{F_{S} \cdot A_{Coll} + F_{B} \cdot A_{Det}}} \sqrt{T}$$

- S et B taux de comptage de la source et du fond en coups.s⁻¹.
- Incertitude due à la statistique de Poisson et au modèle du fond.
- Le taux de comptage de la source dépend de la surface efficace de collection A_{coll}.
- Le taux de comptage du fond dépend de la surface efficace de détection A_{Det}.

ORIGINES DU FOND SUR UN DÉTECTEUR

- Fond cosmique X (*CXB : cosmic X-ray background*) : Photons X et γ provenant de la région du ciel observée mais pas d'une source identifiée
 - Modèles à partir d'observations précédentes
- Fond interne ou instrumental : particules secondaires provenant de l'interaction des protons cosmiques avec les matériaux du satellite
 - Peut être estimé par simulation Monte-Carlo (Geant4)

 Exemple du fond du détecteur de haute énergie de Simbol-X

Blindage pour réduire le fond interne

Blindage passif

- Bloquer le passage des particules vers le détecteur par des matériaux denses (tantale, tunsgtène...)
 - Ces matériaux peuvent s'activer et produire des raies de fluorescence X vers le détecteur !
 - Solution : Sandwich de matériau

Blindage actif

- Détecter les particules passantes sans les bloquer
 - Le traitement électronique marque d'un véto les événements vus en coïncidence sur le détecteur du plan focal.

A. MEURIS

TEMPS MORT DE L'INSTRUMENT

- Durée pendant laquelle les événements provenant de la source astrophysique ne sont pas pris en compte.
 - Réduit le temps d'observation donc la sensibilité du télescope.
- **o Temps mort de lecture** τ_L : blocage des chaînes de mesure pour la lecture des événements
- Temps mort d'anticoïncidence τ_c : fenêtre temporelle ouverte par le passage d'une particule dans le blindage actif
- **•** Temps de récupération τ_R de la chaîne Le passage d'une particule saturante

CHOISIR UN DÉTECTEUR PERFORMANT

Efficacité de détection Rendement quantique Résolution spatiale Résolution spectrale Capacité de comptage Capacité de polarimétrie

53

EFFICACITÉ DE DÉTECTION : DÉFINITION

Nombre de quanta incidents

EFFICACITÉ DE DÉTECTION : ORDRE DE GRANDEUR

	Gaz à ionisation	Scintillateurs		Semiconducteurs	
Détecteur	Ar	Vinyltoluène	Csl	Si	CdTe
Numéro atomique	18	12	53, 55	14	48,52
Masse volumique ρ (g/cm ³)	1,78 (1bar)	1,032	4,5	2,33	5,85
Coefficient μ/ρ d'absorption totale à 10 keV (cm²/g)	63,2	2,20	171	33,9	138
Epaisseur pour une efficacité totale de 90% à 100 keV	2,9 mm	6,2 mm	120 μm	2,5 mm	110 µm

• Taille minimale de la zone sensible

ZONE SENSIBLE DANS UN SEMICONDUCTEUR (1)

o Jonction pn

\rightarrow diode Ge(Li), Si(Li)

- Mise en contact d'un semiconducteur dopé p et d'un semiconducteur dopé n
- Diffusion et recombinaison des porteurs de charges majoritaires
- Interface vide de porteurs libres (non neutre) : zone de déplétion = zone charge d'espace
- Présence d'un champ électrique : zone sensible à la détection des radiations

ZONE SENSIBLE DANS UN SEMICONDUCTEUR (1)

o Jonction pn

\rightarrow diode Ge(Li), Si(Li)

- Mise en contact d'un semiconducteur dopé p et d'un semiconducteur dopé n
- Diffusion et recombinaison des porteurs de charges
- Interface vide de porteurs libres (non neutre) : zone de déplétion = zone charge d'espace
- Application d'une tension V_B pour augmenter la largeur de déplétion

ZONE SENSIBLE DANS UN SEMICONDUCTEUR (2)

o Jonction métal - semiconducteur

\rightarrow Cd(Zn)Te

- Dépôt d'un métal à la surface du semiconducteur
- La différence de travail de sortie crée une barrière de potentiel pour les pour les électrons ($\phi_M > \phi_S$) ou pour les trous ($\phi_M < \phi_S$)
- La hauteur de barrière dépend de l'affinité électronique χ_{S} et définit le type de contact.

Barrière Schottky $\phi_B = \phi_M - \chi_S$ Ex. Au $\phi_M = 5,1$ eV et CZT $\chi_S = 4,5$ eV $\phi_B = 0,6$ eV quasi ohmique

ZONE SENSIBLE DANS UN SEMICONDUCTEUR (2)

o Jonction métal - semiconducteur

\rightarrow Cd(Zn)Te

- Dépôt d'un métal à la surface du semiconducteur
- On applique une tension pour polariser la diode en inverse et augmenter la zone sensible (déplétée) du détecteur.

AMÉLIORATION DE LA ZONE SENSIBLE DANS LES CCD

Charge coupled device (CCD)

MOS CCD

• Structure dérivée d'une structure MOS classique en divisant l'électrode métallique en strips.

pn-CCD

- Structure de double diode.
 - \rightarrow déplétion complète sur 280 μ m
 - \rightarrow efficacité de 90 % à 10 keV

7 détecteurs de 2,5 × 2,5 cm²

détecteur monolithique de $6 \times 6 \text{ cm}^2$

Caméras EPIC de XMM-Newton (1999)

Formation IN2P3 – Du détecteur à la mesure

GAIN DU DÉTECTEUR

- Généralement exprimé en sensibilité (inverse du gain) : énergie minimale pour produire un signal ε (eV)
- Gaz : énergie de création de paire électron-ion
- Semiconducteur : énergie de création paire électron-trou
- Scintillateur :
 - énergie de création de photon (anthracène 60 eV/photon)

 Rendement quantique de la photocathode du PM = <u>Nb d'électrons produits</u> Nb de quanta incidents

@300 K	Gaz à io	nisation	Scintillateurs			Semiconducteurs	
Détecteur	Не	Ar	Plastique	BGO	Bialkali PMT	Si	CdTe
Sensibilité ɛ	41 eV	26 eV	100 eV/ph	300 eV/ph	QE = 26 %	3,63	4,42
Gain@10keV	244 e-	385 e-	26 e-	8,7 e-		2754 e-	2262 e-

• Le gain augmente généralement avec la température.

A. MEURIS

Formation IN2P3 – Du détecteur à la mesure

RÉSOLUTION SPECTRALE : DÉFINITION

• Plus petite différence d'énergie mesurable.

- Largeur à mi-hauteur d'une raie
 - FWHM : full width at half maximum
 - Pour une raie gaussienne FWHM = 2,35 σ
- Résolution spectrale limite (intrinsèque)

Gaz et semiconducteurs

• La statistique d'ionisation suit une loi de type Poisson avec un facteur dit de Fano.

$$\Delta E_{stat} = 2,35 \cdot \sqrt{F \cdot \varepsilon \cdot E_{\gamma}}$$

 ϵ énergie de création de paires

Coups ↑

Bolomètres

 Les fuites thermiques vers la source froide crée des variations d'énergie interne.

$$\Delta E = 2,35 \cdot \xi \sqrt{k_B T^2 C_T}$$

C capacité thermique totale

Energie

RÉSOLUTION SPECTRALE : ORDRE DE GRANDEUR

Spectroscopie X

- Résolution à 5,9 keV (Mn-Kα)
 - Gaz : 885 eV (15 %)
 - Si : **123 eV** (2%)
 - TES : **3 eV** (0,05%)

Spectroscopie gamma

- Résolution à 1,33 MeV (Co60-γ)
 - Ge : 2 keV (0.15 %)
 - Nal : > 5 %
 - BGO : 10 %

Formation IN2P3 – Du détecteur à la mesure

RÉSOLUTION SPATIALE

- Plus petite différence mesurable de position (en 1,2 ou 3 dimensions) d'interaction dans le détecteur.
- Doit permettre d'échantillonner la tâche focale (PSF) du système optique pour ne pas dégrader la résolution angulaire du télescope.

• La résolution spatiale est limitée par des contraintes :

- Physiques : phénomène de diffusion des charges
- Techniques : procédé de pixellisation, nombre de chaînes de mesure
 - o pixellisation sur du silicium jusqu'à 15 μ m.
 - o pixellisation sur du CdTe jusqu'à 100 μm.

DÉTECTEUR SEMICONDUCTEUR DE POSITION

o Détecteur semiconducteur segmenté

- Tout le volume du détecteur est sensible.
- Le signal est induit principalement sur l'électrode la plus proche de l'interaction et du transit.

o Dépôt d'électrodes segmentées

 Procédés chimiques, optiques, mécaniques (photolithographie)

o Détecteurs à pixels

- L'induction du signal sur l'électrode est favorisé par l'effet petit pixels.
- Double-sided strip detector
 - Fine segmentation (10-100 μm)
 - Connexion d'un large nombre de voies analogiques sur les bords.

ETAT DE L'ART DES TECHNOLOGIES

• Si :

- Epaisseur de 250 à 450 μm, surface jusqu'à 10 cm de côté (8' wafer)
- Pixelisation jusqu'à 15 μm, typ. 50 μm pour les applications d'astronomie X
- Cd(Zn)Te :
 - Épaisseur de 0,5 à 2 mm en CdTe, 5 mm CZT, surface jusqu'à 2 cm de côté
 - Strips ~150 μm, pixels ~300 μm

• Ge :

- Epaisseur de 10-15 mm (efficacité gamma)
- Diodes conventionnelles (N-type Li, P-type B) : pas de 2 mm
- Lawrence Berkeley Lab : contact bloquants de Ge amorphe + film métallique : pas de 0,5 mm

L'EFFET « PETITS PIXELS »

o Principe d'induction du signal

- La dérive de charge dans un milieu équipé x
 d'électrodes crée une charge image sur celles-ci appelée charge induite.
- Le signal ne se forme pas au moment où les charges atteignent les électrodes mais dès le début de leur trajet. _{Champ de pondération d'une anode}
- Théorème de Shockley-Ramo : courant induit sur l'électrode k

$$I_{ind}^{\ \ k} = Q \vec{E}_{W}^{\ \ k}(\vec{x}) \cdot \vec{v}(\vec{x})$$

• E_W^k champ de pondération: champ si $V_k = 1V$ et $V_{i\neq k} = 0V$

- Si le pas du pixel p << l'épaisseur du détecteur L, le signal est induit essentiellement par les charges proches de l'électrode de collection.
 - La connexion de l'électronique à l'anode favorise le signal des électrons et écrante le signal de trous qui ont un plus faible produit $\mu\tau$ (mobilité-temps de vie).

CAPACITÉ DE COMPTAGE

• Nombre maximal d'événements détectable par unité de temps

• Dépend de toute la chaîne de mesure

- Temps de désexcitation du détecteur
- Temps de collection du signal (dérive des charges dans le champ électrique)
- Temps de filtrage de l'électronique frontale (pour minimiser le bruit)
- Temps de lecture/acquisition/traitement (taille du système)

• Ordre de grandeur

- Bolomètre TES : 10³ cps/s
- Gaz à ionisation : 10⁴ cps/s
- Semiconducteur : 10⁵ cps/s
- Scintillateur + PM : 10⁷ cps/s

A. MEURIS

Formation IN2P3 – Du détecteur à la mesure

CAPACITÉ DE POLARIMÉTRIE : PERFORMANCE

 Facteur de modulation μ₁₀₀: Amplitude de modulation μ lorsque la source est polarisée à 100%.

$$\mu = \frac{C_{\max} - C_{\min}}{C_{\max} + C_{\min}}$$

- Polarisation détectable minimale
 - n_{σ} niveau de confiance, S et B taux de comptage de la source et du fond, T temps d'observation

$$MDP = \frac{n_{\sigma}}{\mu_{100}} \sqrt{\frac{S+B}{T}}$$

Type de détecteur	Gaz à ionisation He-DME	Scintillateur Nal	Semiconducteur CdTe
Expérience	XPOL (Bellazini)	POLAR	POLCA (Da Silva)
Gamme d'énergie	2-10 keV	50-250 keV	100-400 keV
Facteur modulation	0,4 à 4 keV	0,4 à 150 keV	0,35 à 300 keV
MDP	1%, 100 ks		35 %

Cea

• Plusieurs familles de détecteurs pour plusieurs applications :

- Spectroscopie et imagerie X : semiconducteurs Si (CdTe),
- Spectroscopie X : microcalorimètre TES,
- Spectroscopie gamma : semiconducteur Ge (scintillateur NaI, CsI),
- Polarimétrie X : gaz à ionisation,
- Polarimétrie gamma : semiconducteur CdTe, scintillateur,
- Détecteur d'anticoïncidence : scintillateur plastique, BGO.

RÉPONDRE AUX CONTRAINTES TECHNIQUES

Architecture électrique Architecture mécanique et thermique

SCHÉMA D'UNE ÉLECTRONIQUE DE DÉTECTION

• Electronique frontale

- Mise en forme du signal pour rendre possible la mesure
- Au plus proche du détecteur, généralement analogique (analog front-end)
- ASIC (application specified integrated circuit)

• Electronique de lecture

- Acquisition des informations utiles (encodage)
- Contrôleur souvent réalisé avec un FPGA (field programmable gate array),

o Electronique de traitement

- Fonctions numériques complexes (*digital processing*)
- Microprocesseur : DSP (*digital signal processor*)

CHOIX D'UNE ÉLECTRONIQUE FRONTALE

- L'électronique n'est pas performante en soi mais couplée à un détecteur.
 Elle doit être choisie avec soin suivant les spécificités du système.
- Généralement intégrée dans un circuit microélectronique (ASIC).
- Quelques paramètres clés à définir :
 - Nombre de voies analogiques
 - Gain (mV/fC)
 - Capacité de comptage (coups/s)
 - Charge équivalente de bruit (électrons rms)
 - Consommation électrique (mW/voie)
 - Principe de lecture (autodéclenché ou en continu)
 - Type de sortie (multiplexage, sorties en parallèle)
 - Sensibilité à la capacité d'entrée (e-/pF)
 - Sensibilité au courant de fuite (e-/pA)
 - Tenue aux radiations

EXEMPLE D'UN ASIC FRONT-END : IDEF-X

- Conception pour les instruments spatiaux à base de CdTe
- Utilisation : Solar Orbiter/STIX et STEP (2018), SVOM/Eclairs (2021)
- Principe de lecture : architecture d'une voie

 → Initialement pour la connexion à l'anode d'un CdTe (charge négative)
 → Il existe une version avec double polarité en entrée (DSSD etc.)

EXEMPLE D'UN ASIC FRONT-END : IDEF-X

- Conception pour les instruments spatiaux à base de CdTe
- Utilisation : Solar Orbiter/STIX et STEP (2018), SVOM/Eclairs (2021)
- Principe de lecture : architecture du circuit version « HD » de 32 voies

22

DÉFINITION DE L'ARCHITECTURE ÉLECTRIQUE

• En lien avec les observateurs qui définissent des cas scientifiques :

- Flux typique et maximal d'une source \rightarrow débit de données, consommation
- Caractéristiques de la source \rightarrow possibilité de compression de données à bord
- Mode dégradé d'observation \rightarrow type de redondance
- En dehors de la chaîne de détection, il faut de la puissance pour :
 - Le contrôle thermique du détecteur
 - Le contrôle des mécanismes (roue de calibration, atténuateur, filtres)

EXEMPLE DE LA CAMÉRA DE SVOM/MXT

 $\mathbb{C}\mathbb{Z}$

A. MEURIS

EXEMPLE DE LA CAMÉRA DE SVOM/MXT

- Sources : sursauts gamma observé dans la bande 0,2-10 keV
 - Optique : 30 cm² de surface efficace à 1 keV
 - Comptage sur le détecteur : typ. 10 coup/s pour une source forte
- Plan focal : pnCCD de 256 x 256 pixels.
 - Possibilité de lire la matrice en 6 ms par des 2 ASICs de lecture de 128 voies consommant 1 W chacun.
 - Opération en dessous de -60°C.
- Choix de conception électrique motivés par les contraintes thermiques
 - Lecture à la fréquence de 100 ms et allumage des ASIC 10 % du temps pour limiter la puissance dissipée dans le plan focal (à évacuer).
 - Fonctions de numérisation des données, de polarisation des tensions du détecteurs déportés dans le boîtier d'électronique chaude (10 W à 30°C).
 - Utilisation d'un module à effet Peltier pour refroidir le plan focal (ΔT = 40°C fourni pour une puissance électrique de ~8W).
- Télémesure limitée à 2 Gbit/jour pour l'instrument MXT
 - Pré-étalonnage (source radioactive) et détection d'événements à bord.

CHOIX DES MATÉRIAUX

- Compromis entre masse et efficacité de blindage
- Attention à l'activation des matériaux : raies de fluorescence X
 - Analyse des fluorescences dans la caméra MXT (énergie en keV, observation dans 0,2-10 keV)

Z	Elément	Raie K_{α}	Raie K_{β}	Raie L	Echappement	Utilisation dans la caméra
	chimique	(L-K)	(M-K)	(M-L)	E –E(Si)	МХТ
13	Al	1.49	1.56			Blindage, roue, bondings
14	Si	1.74	1.84		K edge 1.85	Détecteur
22	Ti	4.50	4.93		2.66 à 3.19	Fixation caméra
24	Cr	5.41	5.95		()	Traces alliages
26	Fe	6.40	7.06		4.56 à 5.52	Roulement à billes, moteur
28	Ni	7.46	8.33		5.62 à 6.59	Connecteur, blindage?
29	Cu	8.03	8.91	1.02	6.16 à 7.17	Blindage, support céramique
30	Zn	8.62	9.57	(1.20)	()	Traces alliages
42	Мо	(17.37)	(19.60)	2.39		Support céramique
49	In	(24.00)	(27.24)	3.49		Soudures R, C
77	lr	(63.29)	(74.08)	(12.13)		Optique
79	Au	(66.9)	(77.57)	(10.99)		Revêtement blindage ?
82	Pb	(72.81)	(84.45)	(12.61)		Masses d'équilibrage roue

• Intérêt des simulations Geant 4 pour estimer le bruit de fond et optimiser la conception vis-à-vis des radiations

QUALIFIER LES TECHNOLOGIES À L'ENVIRONNEMENT SPATIAL

L'environnement mécanique L'environnement radiatif

LES CONTRAINTES MÉCANIQUES

- Le lancement
 - Chocs, vibrations
- L'environnement spatial
 - Variations thermiques : fatigue des matériaux
 - Panne des mécanismes, rupture
 - Radiations : particule ionisante ou énergétique
 - Vieillissement accéléré des détecteurs, panne des électroniques
 - **Contamination** : dépôt de particules, réactions de surface...
 - Dégradation des propriétés optiques
 - Micrométéorites, débris spatiaux

Particules Fe, r = 0,3 μm ; v = 10 km/s cratères dans le silicium de 0,1 à 10 μm

- Les techniques d'assemblage des plans focaux sont très spécifiques à un projet et doivent être qualifiées.
 - Essais sur des sous-systèmes : arrachement, vieillissement accéléré, stockage en environnement humide...
 - Essais sur des systèmes : vibrations, chocs, cyclages thermiques, vides thermiques...
- L'hybridation est l'assemblage d'un détecteur et de son électronique frontale.
 - C'est une étape critique pour la performance en bruit et en vitesse de lecture (capacité d'interconnexion, pertes diélectriques des matériaux, impédance des signaux)
 - Toutes les techniques de **l'industrie des semiconducteurs** ne sont pas directement transférables au spatial (contraintes thermo-mécaniques) : *wire-bonding, bold-bonding, flip-chip bonding,* collage...

EXEMPLE DE PLANS FOCAUX A BASE DE CDTE

Astro-H Hard X-ray Imager (2016)

NuSTAR (2012)

• DSSD or CdTe-SDS

• Possibilité d'empilage de couches

• Pixel CZT

• Aboutable sur 3 côtés

 $\begin{array}{l} \text{Crédits: JAXA} \\ \text{32}\times\text{32 pixels} \\ \text{Pas de 250 } \mu\text{m} \end{array}$

Crédits: NASA 16 cm² Pas de 605 µm

Formation IN2P3 – Du détecteur à la mesure

EXEMPLE D'ESSAIS DE QUALIFICATION

• Essais sur des sous-systèmes et des systèmes intégrés

• Tests d'arrachement sur le détecteur hybride Caliste-SO

• Tests de vibration du système de détection MACSI

 $\mathbb{C}\mathbb{Z}$

RADIATION : ORIGINES ET CONSÉQUENCES

• Effets cumulatifs

- Interaction d'électrons et de protons de plus de 100 keV (irruptions solaires, ceintures de radiation).
- Accumulation des charges dans les isolants (oxydes).
- Dégradation continue des paramètres électriques au cours du temps puis éventuellement perte de fonctionnalité.
- La dose cumulée s'exprime en rad.Si ; 100 rad = 1 J/kg.

• Effets singuliers

- Interactions des ions du rayonnement cosmique et des protons solaires ou des ceintures de radiation.
- Effets destructifs ou non pour les composants électroniques.

Ceintures intérieure et extérieure de Van Allen (10⁷ électrons.cm⁻².s⁻¹)

EFFET DES RADIATIONS SUR LES DÉTECTEURS

- Les effets transitoires peuvent se supprimer par comparaison de trames successives et mesure de l'énergie.
- Dose cumulée : les **particules non ionisantes** (neutrons) provoquent des défauts 0 cristallins (déplacement, lacunes) qui créent des pièges dans le gap des semiconducteurs.
 - Le **recuit** régulier des détecteurs (*annealing*) est une technique efficace.

Dégradation de la résolution spectrale dans les Ge-HP

Formation IN2P3 – Du détecteur à la mesure

RAPPEL DU PRINCIPE DE LECTURE D'UN CCD

• Mesure en 4 étapes

VA

- 1. Détection des photons incidents par effet photoélectrique
- 2. Accumulation des charges dans la capacité MOS
- Transfert des charges de proche en proche vers l'électronique frontale placée sur le substrat
- Lecture de l'information par l'électronique externe
- Conséquence sur un détecteur irradié : les défauts cristallins diminuent le temps de vie des porteurs de charge (piégeage)
 → risque de perte de charge au cours du transfert.

- Active pixel sensors : le détecteur intègre l'élément sensible et le premier étage d'électronique. Le signal est mesuré sur place.
 - Exemple : Depleted p-channel field effect transistor (DePFET)
- Difficultés technologiques
 - Substrats et standards de fabrication a priori incompatibles
 - Procédé double face pour les détecteurs

Pré-amplificateur de charge (FET) (Silicium dopé)

Zone sensible (Silicium haute résistivité entièrement déplété, longue durée de vie des porteurs)

VA

- Active pixel sensors : le détecteur intègre l'élément sensible et le premier étage d'électronique. Le signal est mesuré sur place.
 - Exemple : Depleted p-channel field effect transistor (DePFET)

- 1- Accumulation de charge dans la grille interne
- 2- Lecture du courant avec la grille interne pleine
- 3- Evacuation des charges de la grille interne
- 4- Lecture du courant avec la grille interne vide

- Active pixel sensors : le détecteur intègre l'élément sensible et le premier étage d'électronique. Le signal est mesuré sur place.
 - Exemple : Depleted p-channel field effect transistor (DePFET)

- 1- Accumulation de charge dans la grille interne
- 2- Lecture du courant avec la grille interne pleine
- 3- Evacuation des charges de la grille interne
- 4- Lecture du courant avec la grille interne vide

- Active pixel sensors : le détecteur intègre l'élément sensible et le premier étage d'électronique. Le signal est mesuré sur place.
 - Exemple : Depleted p-channel field effect transistor (DePFET)

- 1- Accumulation de charge dans la grille interne
- 2- Lecture du courant avec la grille interne pleine
- 3- Evacuation des charges de la grille interne
- 4- Lecture du courant avec la grille interne vide

- Lecture rapide de grande matrices
- Plus tolérant aux radiations
- Pixel allumé seulement pendant la lecture (gain de puissance)
- Faible capacité d'entrée (haute performance specoscopique)

- 1- Accumulation de charge dans la grille interne
- 2- Lecture du courant avec la grille interne pleine
- 3- Evacuation des charges de la grille interne
- 4- Lecture du courant avec la grille interne vide

ATHENA/WIDE FIELD IMAGER

• Télescope de 12 m avec 2 instruments pouvant se placer au plan focal :

- le X-ray Integral Field Unit (matrice de microcalorimètres)
- le <u>Wide Field Imager</u> avec deux foyers pour le grand champ de vue (amas de galaxies) et pour le timing rapide (objets compacts brillants)

• Plan de détection du WFI :

- 4 Large matrices DEPFET de 512 x 512 pixels de 130 μm
- 1 matrice de DEFPET adaptée au comptage rapide (1 Crab: 7.10⁴ photons/s) : 'gateable structure', 'window mode'
- Lecture en 2 µs par ligne (colonnes lues en parallèle)
- Héritage de BepiColombo/MIXS

94

VA

EFFET DES RADIATIONS SUR L'ÉLECTRONIQUE CMOS

Effet de dose cumulée

- Effet de la dose cumulée sur les circuits CMOS
 - Variation de la tension de seuil des transistors
 - Apparition de courants parasites

Effets singuliers

• L'effet de l'interaction de la particule ionisante dépend de sa faculté à déposer de l'énergie dans la matériau.

$$LET = \frac{1}{\rho} \frac{dE}{dx}$$

- *Latch-up* : courant parasite entre les alimentations positive et négative court-circuit pouvant provoquer la destruction du composant.
- *Single event upset* : basculement d'un bit d'un registre
- Technique de durcissement pour rendre les cellules numériques immunes.

TOLÉRANCE DES COMPOSANTS

Propriété du circuit

 Sections efficaces de SEL et SEU (single event latch-up / upset) en fonction du LET (linear energy transfer)

• Peut se décrire par une courbe de Weibull avec un **seuil de LET.**

Probabilité de panne en orbite

- La convolution de la section efficace (cm²) par le spectre de LET (cm⁻².s⁻¹) donne un taux d'événements (s⁻¹)
 - garantit l'immunité aux latch-up
 - définit la fréquence de rechargement des registres

Formation IN2P3 « Du détecteur à la mesure » Mai 2013 - Fréjus

A. MEURIS

Les détecteurs pour l'astronomie des hautes énergies – Conclusion

Perspectives de développements instrumentaux et de missions spatiales

DIAGRAMME DE SENSIBILITÉ

FUTURS BESOINS ET DÉVELOPPEMENTS

Objectifs scientifiques

- Physique des objets compacts et des systèmes binaires :
 - Polarimétrie X et X-dur
- Physique des trous noirs et des noyaux actifs de galaxies
 - Spectroscopie ultra haute résolution
- Physique des étoiles à neutrons
 - Timing
- Physique des sursauts gamma
 - Observation multi-longueur d'onde

Défis instrumentaux

- Détecteurs
 - Gas pixel detector (volume vs efficacité)
 - Nouveaux concepts instrumentaux pour améliorer la sensibilité à 1 MeV
 - Matrices de microcalorimètres X
 - Augmentation de la densité de pixels
- Optique
 - Large miroirs X à haute résolution spatiale
 - Miroirs focalisant au-delà de 100 keV
 - Lentilles X légères (microchannel plates)
- Electronique
 - ASIC 2D pour hybridation directe
 - Multiplexage des chaînes cryogéniques
 - Front-end basse conso, fort comptage

A. MEURIS

Formation IN2P3 – Du détecteur à la mesure

- Les systèmes de détection pour l'astronomie de hautes énergies gamma sont généralement l'association de plusieurs détecteurs :
 - Si/CdTe pour une large bande spectrale
 - Plan focal/détecteur d'anticoïncidence
 - Détecteur à gaz + matrice de pixels Si (gaz pixel detector)
- La tendance pour les optiques est le développement de miroirs à haute résolution angulaire (10-20 arcsec) au-delà de 10 keV et des longueurs focales modérées (10 m).
 - Nécessite des détecteurs à petits pixels (100 μm) et de large surface (haute densité de pixelisation).
- L'obtention des performances ultimes des détecteurs passent par la mise au point de procédés d'hybridation et le développement d'électronique frontale innovants.