## **Electromagnetic separators**

**Ulli Köster** 

#### Institut Laue-Langevin Grenoble, France

#### **Institut Laue-Langevin**



- founded 1967
- today 13 member states
- operates most powerful neutron source of the world: 58 MW high flux reactor, 1.5·10<sup>15</sup> n./cm<sup>2</sup>/s maximum neutron flux
- over 40 instruments, mainly for neutron scattering
- user facility: 2000 scientific visitors from 45 countries per year
- Nuclear physics instruments: LOHENGRIN, GAMS, (PF1B)

#### LOHENGRIN: an electromagnetic separator



#### **Electromagnetic separators at GANIL**





## Super-FRS at FAIR, Germany



## Importance of electromagnetic spectrometers











#### Outline

- 1. Definitions and history
- 2. Basics of ion optics and dispersive elements
- 3. Static fields
  - a) deflection spectrometer
  - b) retardation spectrometer
- 4. Dynamic fields/separation
  - a) Time-of-Flight spectrometer
  - b) Radiofrequency spectrometer
  - c) Traps
- 5. Technical realization (ion sources, etc.)
- 6. "Real examples" for nuclear physics applications
  - a) ISOL
  - b) Recoil separators
  - c) Fragment separators
  - d) Spectrometer

#### **Definitions**

- spectrometer: electrical detection
- spectrograph: photographic or other non-electrical detection
- also used: spectroscope
- mass / energy / isotope separator: assures a physical separation of different masses / energies / isotopes

#### Thomson 1897: cathode rays



"Cathode rays", J.J. Thompson, Phil. Mag. 44 (1897) 293.

Noble prize in physics 1906 for discovery of the electron and the determination of its m/q ratio.

### Goldstein 1886: Kanalstrahlen



Figure 1.3 Goldstein's glow discharge tube (1886) for generation of positively charged ions. (C. Brunnée, Int. J. Mass. Spectrom. Ion Proc. 76, 125 (1987). Reproduced by permission of Elsevier.)

First fluorescent lamp and ion source.



Figure 1.4 Schematic of a Wien velocity filter with EB configuration: combination of electric (E) and magnetic (B) field (Wien, 1898). (C. Brunnée, Int. J. Mass. Spectrom. Ion Proc. 76, 125 (1987). Reproduced by permission of Elsevier.)

## Wien: Nobel price in physics 1911 for discovery that "Kanalstrahlen" carry positive charge

#### Thomson 1910: parabola mass spectrograph



Figure 1.5 Parabola mass spectrograph constructed by J.J. Thomson (1910) with a discharge tube as ion source, a superimposed electrical field and a magnetic field oriented parallel to it for ion separation, and a photoplate for ion detection. (H. Kienitz (ed.), Massenspektrometrie (1968), Verlag Chemie, Weinheim. Reproduced by permission of Wiley-VCH.)

#### Neon consists of two isotopes with mass 20 and 22

## Thomson 1913: mass spectrum of neon



Figure 1.6. Mass spectrum of neon with masses 20 and 22 u measured by J.J. Thomson (1913) using his parabola mass spectrograph is shown in Figure 1.5. (H. Kienitz (ed.), Massenspektrometrie (1968), Verlag Chemie, Weinheim. Reproduced by permission of Wiley-VCH.)



#### The LOHENGRIN fission fragment separator

#### Angular focusing in x and y direction.



#### Aston 1919: velocity focusing spectrograph



Aston's design for the mass spectrograph.

Aston: velocity focusing gives factor 10 improvement in mass resolution ( $\Delta m/m = 1/130$ )

Noble prize in chemistry 1922 for the discovery that elements may have isotopes of different mass (<sup>20</sup>Ne, <sup>21</sup>Ne and <sup>22</sup>Ne).

#### Dempster 1918: 180 degree spectrometer



Figure 1.7 Mass spectrometer from A.1. Dempirer (1918). A – ion source; B – electromagner; C – Faraday cup; D – electrometer. (H. Kienitz (ed.), Massenspektrometrie (1968), Voilag Chemie, Weinheim: Reproduced by permission of Wiley-VCH.)

#### Calutron 1942: electromagnetic isotope separation





Large scale electromagnetic isotope separation

## **Collector plates of a Calutron**



## 1945: large scale electromagnetic isotope separation



## 1945: "Impact" of electromagnetic isotope separation



Hiroshima: 60 kg of isotopically enriched <sup>235</sup>U

## Present enrichment technology for <sup>235</sup>U

boiling point:  $UF_6$  56 °C  $\Rightarrow$  centrifuges



## Today: very high enrichment of stable isotopes





## **Cancer and efficiency of treatments**

| At time of diagnosis                                     | Primary<br>tumor | With<br>metastases | Total |
|----------------------------------------------------------|------------------|--------------------|-------|
| Diagnosed                                                | 58%              | 42%                | 100%  |
| Cured by:                                                |                  |                    |       |
| Surgery                                                  | 22%              |                    |       |
| Radiation therapy                                        | 12%              |                    |       |
| Surgery+radiation therapy                                | 6%               |                    |       |
| All other treatments and combinations incl. chemotherapy |                  | 5%                 |       |
| Total cured                                              | <b>40%</b>       | 5%                 | 45%   |
| Fraction cured                                           | <b>69%</b>       | 12%                | 45%   |

Per year over one million cancer deaths in the EU.

 $\Rightarrow$  improve early diagnosis  $\Rightarrow$  improve systemic treatments

## Mammary Carcinoma Survival time since diagnosis of metastases



#### **Comparison of Therapies**



## The principle of targeted therapies

- "attractive" vector > high uptake by the target
- transportable
- good in-vivo stability
- · warriors "not visible"
- delayed uptake > suitable half-life
- limited space > high specific activity
- optimum arms
- specific



# Multidisciplinary collaboration to fight cancer



Nuclear medicine and medical physics







## What success does PRRT offer?



## Lymphoma therapy: RITUXIMAB+<sup>177</sup>Lu

#### E.B., 1941 (m): UPN 6







## **ESI-TOF-MS** for DOTA-peptides analysis



K. Zhernosekov et al., ICTR-PHE 2012.

back to electromagnetic separators...

#### Aston 1925: improved mass spectrograph



Improved version gives mass resolution:  $\Delta m/m = 1/600$ Accuracy of mass determination:  $10^{-4}$ Used to study deviations of atomic masses m from A. Introduced: "packing fraction" = m/A - 1Systematic investigation of nuclear binding energies



#### **Carbon isotopes**



#### Why "ion beams"?

#### **Production:**

high radiation environment



#### **Transport methods:**

- carry ("SRAFAP")
- drive (G.T. Seaborg and W.D. Loveland, The Elements beyond Uranium, John Wiley & Sons, 1990)
- · transport shuttle with pressurized air
- transport in gas-jet
- pump through vacuum system
- send as ion beam

#### Detection:

low radiation background



## Irradiations of targets



## Off-line mass separator





## 1951: first ISOL experiment at Niels Bohr Institute

Mat. Fys. Medd. Dan. Vid. Selsk. 26, Nr. 7 (1951).











#### The challenge of the extremes!

#### **Optimize event rate**

All steps of the separation chain need to be optimized!

 $\mathbf{r} = \Phi \cdot \boldsymbol{\sigma} \cdot \mathbf{N} \cdot \boldsymbol{\epsilon}_{\mathsf{target}} \cdot \boldsymbol{\epsilon}_{\mathsf{source}} \cdot \boldsymbol{\epsilon}_{\mathsf{transp}} \cdot \boldsymbol{\epsilon}_{\mathsf{det}}$ 

In-target production Efficiency

All steps of the separation chain need to be optimized!



powerful accelerator

 $\Rightarrow$  accelerator technology

## **Optimize RIB intensity**

All steps of the separation chain need to be optimized!



 $\mathbf{r} = \Phi_{\bullet \sigma} \cdot \mathbf{N} \cdot \varepsilon_{\text{target}} \cdot \varepsilon_{\text{source}} \cdot \varepsilon_{\text{transp}} \cdot \varepsilon_{\text{det}}$ 

high production cross-sections  $\Rightarrow$  nuclear physics

All steps of the separation chain need to be optimized!



#### **Optimize RIB intensity**





#### **Optimize RIB intensity**



#### All steps of the separation chain need to be optimized!



#### **Optimize RIB intensity**



## **Optimize RIB intensity and purity**



#### All steps of the separation chain need to be optimized!

#### **Optimize RIB intensity**



Prog. Part. Nucl. Phys. 46 (2001) 411.

#### **Particle accelerators**



 $\mathbf{r} = \frac{\Phi}{\mathbf{\nabla}} \cdot \mathbf{\nabla} \cdot \mathbf{N} \cdot \varepsilon_{\text{target}} \cdot \varepsilon_{\text{source}} \cdot \varepsilon_{\text{transp}} \cdot \varepsilon_{\text{det}}$ 

## **CERN synchrocyclotron 1957-1990**

600 MeV p up to 4 μA

910 MeV <sup>3</sup>He 1 GeV <sup>12</sup>C





#### **Nuclear reactions**



 $\mathbf{r} = \Phi \cdot \mathbf{\sigma} \cdot \mathbf{N} \cdot \varepsilon_{target} \cdot \varepsilon_{source} \cdot \varepsilon_{transp} \cdot \varepsilon_{det}$ 



**Direct reactions** 

<sup>18</sup>O(p,n)<sup>18</sup>F cross-sections



proton energy (MeV)

#### **Nuclear reactions**

- 1. Direct reactions and light ion fusion-evaporation
- (p,n), (<sup>3</sup>He,n), (α,n), (n,α),... .
- high cross-sections, products relatively close to stability driver beams from (low-cost) cyclotrons
- •



#### **Nuclear reactions**

- 1. Direct reactions and light ion fusion-evaporation
- (p,n), (<sup>3</sup>He,n), (α,n), (n,α),...
- · high cross-sections, products relatively close to stability
- driver beams from (low-cost) cyclotrons
- 2. Heavy-ion fusion-evaporation
- produces neutron-deficient heavier isotopes
- small energy window in vicinity of Coulomb barrier (some MeV/nucl.)
- requires heavy ion beams ⇒ bigger cyclotrons or LINACs


#### **Nuclear reactions**

- 1. Direct reactions
- · high cross-sections, products relatively close to stability
- driver beams from (low-cost) cyclotrons
- 2. Heavy-ion fusion-evaporation
- produces neutron-deficient heavier isotopes
- small energy window in vicinity of Coulomb barrier (some MeV/nucleon)
- requires heavy ion beams ⇒ bigger cyclotrons or LINACs
- 3. Deep inelastic collisions (multi-nucleon transfer)
- · products close to target, mass-flow towards stability
- light to heavy ion beams (tens of MeV/nucleon)
- only method to reach neutron-rich isotopes with N<sub>product</sub> > N<sub>target</sub> +1
- 4. Spallation
- intranuclear cascade heats nucleus
- evaporation of preferentially neutrons  $\Rightarrow$  neutron-deficient products
- high cross-sections for products close to target
- requires protons of >100 MeV  $\Rightarrow$  big p cyclotron, synchrotron or LINAC



**Spallation + Fragmentation + Fission** 

T. Enqvist et al., Nucl. Phys. A686 (2001) 481.

# Low-energy fission



"Low-energy" fission (<sup>238</sup>U(γ,f) from 50 MeV e<sup>-</sup>)



#### High-energy fission (500 MeV p on <sup>238</sup>U) Proton 10 10 10 10 10/2 10 10 78 10 6.1 10 ^ 58 101 413 10 138 10 ^ 2/1 10/8 1.6 Neutron

## **Nuclear reactions**

#### 5. Fragmentation

- many cross-sections show little energy dependence in the region 40-2000 MeV/nucleon
- target fragmentation needs high energy protons (see spallation)
- projectile fragmentation needs high energy heavy ions
  ⇒ huge cyclotron, synchrotron or LINAC

#### 6. Fission

- induced by: "time" (**spontaneous**), **neutrons**, **photons**, **protons**, **heavy ions**, antiprotons, pions, post fusion-evaporation, beta-decay/EC
- highest cross-sections for thermal neutrons
- with increasing excitation energy symmetric and far asymmetric fission is favored, but the products get in average less neutron-rich!
- driver accelerators: reactors, medium-energy (some MeV to tens MeV) deuterons from cyclotron or LINAC, microtron or LINAC for electron beams,...

# Radioactive ion beam facilities for fission products

**Previous**, presently operating and future RIB facilities using fission:

| <sup>252</sup> Cf(sf)                                                  | CARIBU                                                                          |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| <sup>235</sup> U(n <sub>th</sub> ,f)                                   | OSTIS, OSIRIS, LOHENGRIN, TRIGA-SPEC,<br>CARR-ISOL, PIAFE, MAFF, PIK-ISOL       |
| <sup>238</sup> U(p,f)                                                  | ISOLDE, IRIS, LISOL, JYFL, HRIBF, TRIAC,<br>ISAC-II, SPES, ISOL@MYRRHA, EURISOL |
| $W(p,xn) > {}^{238}U(n,f)$                                             | ISOLDE, IRIS, ISAC-II, EURISOL                                                  |
| <sup>12</sup> C(d,n) > <sup>238</sup> U(n,f)                           | PARRNe, SPIRAL-II                                                               |
| <sup>2</sup> H(d,n) > <sup>238</sup> U(n,f)                            | SPIRAL-II                                                                       |
| <sup>9</sup> Be(d,n) > <sup>238</sup> U(n,f)                           | PARRNe                                                                          |
| <sup>7</sup> Li(d,n) > <sup>238</sup> U(n,f)                           | FRIB                                                                            |
| $W(e^{-},\gamma) > {}^{238}U(\gamma,f)$                                | ALTO, DRIBS, ARIEL                                                              |
| <sup>1</sup> H, <sup>9</sup> Be <sup>208</sup> Pb( <sup>238</sup> U,f) | GSI-FRS, RIKEN, FRIB, FAIR                                                      |
|                                                                        |                                                                                 |





## **SPIRAL2** facility at GANIL





Maintenance and Storage cells



#### 1-2.2 GeV, multi-MW proton driver

Several direct target stations (ca. 100 kW)

One Hg spallation + fission target station (>1 MW, i.e. 1E15 fissions/s)

Multiple user operation in parallel

Low-energy beam area

Post-acceleration with LINAC up to ca. 10 A.MeV

Post-acceleration to ca. 100 A.MeV with LINAC or cyclotron

Fragmentation of post-accelerated RIBs

Commissioning: >> 2020?



#### **IGISOL** method



### Volatility of the elements

| 1<br>H |    |    | T ()<br>T () | o vaj<br>o vaj | oor > | 0.0 | 1 mb<br>1 mb | ar) <<br>ar) < | < 100<br>< 400 | °C<br>°C |     |     |     |     |     |     | 2<br>He |
|--------|----|----|--------------|----------------|-------|-----|--------------|----------------|----------------|----------|-----|-----|-----|-----|-----|-----|---------|
| 3      | 4  |    | T ()         | o va           | oor > | 0.0 | 1 mb         | ar) <          | < 100          | 0 °C     |     | 5   | 6   | 7   | 8   | 9   | 10      |
| Li     | Ве |    | 1) T         | o va           | oor > | 0.0 | 1 mb         | ar) <          | < 200          | 0 °C     |     | В   | С   | Ν   | 0   | F   | Ne      |
| 11     | 12 |    | T (          | o va           | oor > | 0.0 | 1 mb         | ar) >          | <b>200</b>     | 0°C      |     | 13  | 14  | 15  | 16  | 17  | 18      |
| Na     | Mg |    |              |                |       |     |              |                |                |          |     | AI  | Si  | Ρ   | S   | CI  | Ar      |
| 19     | 20 | 21 | 22           | 23             | 24    | 25  | 26           | 27             | 28             | 29       | 30  | 31  | 32  | 33  | 34  | 35  | 36      |
| к      | Ca | Sc | Ti           | V              | Cr    | Mn  | Fe           | Co             | Ni             | Cu       | Zn  | Ga  | Ge  | As  | Se  | Br  | Kr      |
| 37     | 38 | 39 | 40           | 41             | 42    | 43  | 44           | 45             | 46             | 47       | 48  | 49  | 50  | 51  | 52  | 53  | 54      |
| Rb     | Sr | Y  | Zr           | Nb             | Мо    | Тс  | Ru           | Rh             | Pd             | Ag       | Cd  | In  | Sn  | Sb  | Те  | I   | Xe      |
| 55     | 56 | 57 | 72           | 73             | 74    | 75  | 76           | 77             | 78             | 79       | 80  | 81  | 82  | 83  | 84  | 85  | 86      |
| Cs     | Ва | La | Hf           | Та             | W     | Re  | Os           | lr             | Pt             | Au       | Hg  | TI  | Pb  | Bi  | Ро  | At  | Rn      |
| 87     | 88 | 89 | 104          | 105            | 106   | 107 | 108          | 109            | 110            | 111      | 112 | 113 | 114 | 115 | 116 | 117 | 118     |
| Fr     | Ra | Ac | Rf           | Db             | Sg    | Bh  | Hs           | Mt             | Ds             | Rg       | Cn  |     | FI  |     | Lv  |     |         |

| 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68  | 69  | 70  | 71  |
|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| Се | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er  | Tm  | Yb  | Lu  |
| 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| Th | Pa | U  | Np | Pu | Am | Cm | Bk | Cf | Es | Fm  | Md  | No  | Lr  |



# CARIBU: Radioactive Beams from <sup>252</sup>Cf(sf)



1 Ci <sup>252</sup>Cf source: 1E9 fissions/s

#### **TRIGA-SPEC** at Mainz reactor

- 0.5 mg <sup>235</sup>U or 0.5 mg <sup>239</sup>Pu or 0.3 mg <sup>249</sup>Cf
- 1.8E11 n./cm<sup>2</sup>/s •
- ٠



## **Optimize RIB intensity**



# ISOLDE Target (1967)



# **ISOLDE Target and ion source (1968)**



# **ISOLDE** Compact target and ion source (1974)





# **Robot handling**





### **ISOLDE** target and ion source unit

# **Historical development**

Miniaturisation $\Rightarrow$  faster releaseStandardisation $\Rightarrow$  easier mass-productionRemote handling $\Rightarrow$  higher activities

# SPIRAL target and ion source unit



# **GSI-ISOL** target and ion source unit



#### Variants of ISOL facilities

- 1a protons on thick (heavy) target: fragmentation, spallation, fission ISOLDE-CERN (1.4 GeV), IRIS-PNPI (1 GeV), ISAC-TRIUMF (0.5 GeV)
- 1b direct reactions in thick target CRC Louvain-la-Neuve, HRIBF Oak Ridge, TRIAC Tokai
- 1c fission in thick target OSIRIS (Studsvik), HRIBF Oak Ridge, TRIAC Tokai, SPIRAL2 (GANIL)
- 2 projectile fragmentation in thick (carbon) target SPIRAL (GANIL), DRIBS (Dubna), EXCYT (LNS Catania)
- 3 fusion-evap. or multinucleon transfer in thin target plus solid catcher GSI-ISOL, UNIRIB (ORNL), DOLIS (Daresbury), LISOL (Leuven), IMP Lanzhou, TRIμP KVI Groningen, MASHA (Dubna), SPIRAL2 (GANIL)
- 4 fusion-evap., direct reaction or fission in thin target plus gas catcher (lon Guide ISOL = IGISOL) IGISOL (Jyväskylä), LISOL (Leuven), JAEA Tandem ISOL (Tokai),...
- 5 liquid helium catcher JYFL Jyväskylä, KVI Groningen

#### **ISOL** targets

#### **Target materials:**

- 1. molten metals: Ge, Sn, La, Pb, Bi, U,...
- 2. solid metals: Ti, Zr, Nb, Mo, Ta, W, Th,...
- 3. carbides: Al<sub>4</sub>C<sub>3</sub>, SiC, VC, ZrC, LaC<sub>x</sub>, ThC<sub>x</sub>, UC<sub>x</sub>,...
- 4. oxides: MgO, Al<sub>2</sub>O<sub>3</sub>, CaO, TiO<sub>x</sub>, ZrO<sub>2</sub>, CeO<sub>x</sub>, ThO<sub>2</sub>,...
- 5. others: graphite, borides, silicides, sulfides, zeolithes,...

#### **Target dimensions:**

target container: 20 cm long, 2 cm diameter target thickness 2—200 g/cm<sup>2</sup>, 10—100% of bulk density micro-dimensions of foils, fibers or pressed powder: 1—30 μm

Radiochimica Acta 89 (2001) 749.

#### **Diffusion characteristics**

Bad diffusion hosts (narrow and/or stiff crystal lattice): Re, diamond, SiC,...

Good diffusion hosts (wide crystal lattice):

Ti, Zr, Hf (fcc metals), Nb, Ta, graphite, polycrystalline oxides (in particular fibers!)

Characteristic diffusion length:

d = (2 n D t)<sup>1/2</sup> n=1 (foil), n=2 (fiber), n=3 (sphere)

Maximize D and minimize diffusion path:

- $\Rightarrow$  thin metal foils (2  $\mu$ m ... 30  $\mu$ m)
- $\Rightarrow$  fine powders (µm)
- $\Rightarrow$  thin fibers (some  $\mu$ m)

#### Effusion: random walk release



# **Optimize RIB intensity**

#### All steps of the separation chain need to be optimized!



# Isotope Separation On-Line





#### The first ionization energy of the elements

#### Positive surface ionization source





# Surface ionization versus thermal ionization

R. Kirchner, Nucl. Instr. Meth. A292 (1987) 204.

### Ionization potentials of the elements

| 1<br>H               |                       |                | lon             | izatio           | on po                  | otent            | ial: <           | < 5 e            | V        |                 |                 |                       |          |                 |                 |          | He <sup>2</sup> |
|----------------------|-----------------------|----------------|-----------------|------------------|------------------------|------------------|------------------|------------------|----------|-----------------|-----------------|-----------------------|----------|-----------------|-----------------|----------|-----------------|
| 3<br>Li              | Be <sup>4</sup>       |                | lon             | izatio           | on po                  | otent            | ial: 5           | 5.0 -            | 5.8 (    | eV              |                 | 5<br><b>B</b>         | 6<br>C   | 7<br>N          | 8<br>0          | 9<br>F   | 10<br><b>Ne</b> |
| 11<br>Na             | 12<br><b>Mg</b>       |                | lon             | izatio           | on po                  | otent            | ial: 5           | 5.8 -            | 6.5 (    | eV              |                 | 13<br><mark>Al</mark> | 14<br>Si | 15<br><b>P</b>  | 16<br>S         | 17<br>CI | 18<br><b>Ar</b> |
| 19<br><mark>K</mark> | 20<br><mark>Ca</mark> | 21<br>Sc       | 22<br>Ti        | v 23             | 24<br>Cr               | 25<br><b>Mn</b>  | 26<br>Fe         | 27<br>Co         | 28<br>Ni | 29<br>Cu        | 30<br><b>Zn</b> | 31<br><mark>Ga</mark> | 32<br>Ge | 33<br><b>As</b> | 34<br>Se        | 35<br>Br | 36<br>Kr        |
| 37<br>Rb             | 38<br>Sr              | 39<br><b>Y</b> | 40<br><b>Zr</b> | 41<br>Nb         | 42<br><b>Mo</b>        | 43<br>Tc         | 44<br>Ru         | 45<br>Rh         | 46<br>Pd | 47<br>Ag        | 48<br>Cd        | 49<br>In              | 50<br>Sn | 51<br>Sb        | 52<br><b>Te</b> | 53<br>   | 54<br><b>Xe</b> |
| 55<br>Cs             | 56<br>Ba              | 57<br>La       | 72<br>Hf        | 73<br>Ta         | <b>w</b> <sup>74</sup> | 75<br>Re         | 76<br><b>Os</b>  | 77<br>Ir         | 78<br>Pt | 79<br><b>Au</b> | 80<br>Hg        | 81<br>TI              | 82<br>Pb | 83<br>Bi        | 84<br><b>Po</b> | 85<br>At | 86<br>Rn        |
| 87<br>Fr             | 88<br>Ra              | 89<br>Ac       | 104<br>Rf       | 105<br><b>Db</b> | 106<br>Sg              | 107<br><b>Bh</b> | 108<br><b>Hs</b> | 109<br><b>Mt</b> | 110      | 111             | 112             |                       |          |                 |                 |          |                 |

| 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68  | 69  | 70  | 71  |
|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er  | Tm  | Yb  | Lu  |
| 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| Th | Ра | U  | Np | Pu | Am | Cm | Bk | Cf | Es | Fm  | Md  | No  | Lr  |

#### Ingredients of a plasma ion source



- Fast electrons:
  - A) Thermionic emission + accelerating field
  - B) RF heating
- Atom confinement: plasma chamber
- Electron "recycling": magnetic field
- Ion extraction system

$$I[A] = A^* T[K]^2 \exp(-\Phi[eV]/kT[K])$$

 $v_{cvc}[GHz] = 28 B[T]$ 

 $r[mm] = 0.35 E_e[eV]^{1/2}/B[T]$ 

#### Ionization and neutralization

$$\begin{split} &X^0+e^-\to X^++2\,e^-,\ Q=-\,IP_1\\ &X^0+e^-\to X^{2+}+3\,e^-,\ Q=-\,(IP_1+IP_2)\\ &X^0+e^-\to X^{3+}+4\,e^-,\ Q=-\,(IP_1+IP_2+IP_3)\\ &X^++e^-\to X^{2+}+2\,e^-,\ Q=-\,IP_2\\ &X^++e^-\to X^0,\qquad Q=IP_1\qquad Neutralization\\ &X^0+Y^+\to X^++Y^0,\ Q=IP_Y-IP_X\qquad Charge exchange \end{split}$$



#### **Electron impact ionization cross-sections**

# Forced Electron Beam Ion Arc Discharge (FEBIAD)



R. Kirchner, Rev. Sci. Instr. 67 (1996) 928.



#### **ISOLDE "FEBIAD"**

# 2001: <sup>94-99</sup>Kr decay studied at ISOLDE



U.C. Bergmann et al., Nucl. Phys. A 714 (2003) 21.



L. Penescu et al., Rev. Sci. Instr. 81 (2010) 02A906.

#### **Electron Cyclotron Resonance Ion Source (ECRIS)**



#### radial plasma confinement by magnetic multipole field

Iongitudinal plasma confinement by magnetic bottle effect (1+ ECRIS) or minimum B configuration (n+ ECRIS)

#### plasma heating by RF (typically 2.45 – 30 GHz)

good efficiency for light elements (20% He+, 50% C+, O+, Ar+, 90% Xe+)

R. Geller, Electron Cyclotron Resonance Ion Sources and ECR Plasmas, IOP, Bristol, 1996.

# Volatility of the elements

| 1<br>H |    | _  | T ( <br>T ( | o vaj<br>o vaj | oor > | 0.0 <sup>°</sup> | 1 mb<br>1 mb | ar) <<br>ar) < | < 100<br>< 400 | 0°C         |     |     |     |     |     |     | 2<br>He |
|--------|----|----|-------------|----------------|-------|------------------|--------------|----------------|----------------|-------------|-----|-----|-----|-----|-----|-----|---------|
| 3      | 4  |    | <u>T (</u>  | o vaj          | oor > | 0.0              | 1 mb         | ar) <          | < 100          | 0° 00       |     | 5   | 6   | 7   | 8   | 9   | 10      |
| LI     | ве |    | <u> </u>    | o va           | or >  | • 0.0°           | 1 mb         | oar) <         | < 200          | <u>0°°C</u> |     | в   | C   | N   | 0   | F   | Ne      |
| 11     | 12 |    | T (I        | o vaj          | oor > | • <b>0.0</b> '   | 1 mb         | oar) >         | > 200          | 00 °C       |     | 13  | 14  | 15  | 16  | 17  | 18      |
| Na     | Mg |    |             |                |       |                  |              |                |                |             |     | AI  | Si  | Ρ   | S   | CI  | Ar      |
| 19     | 20 | 21 | 22          | 23             | 24    | 25               | 26           | 27             | 28             | 29          | 30  | 31  | 32  | 33  | 34  | 35  | 36      |
| K      | Ca | Sc | Ti          | V              | Cr    | Mn               | Fe           | Co             | Ni             | Cu          | Zn  | Ga  | Ge  | As  | Se  | Br  | Kr      |
| 37     | 38 | 39 | 40          | 41             | 42    | 43               | 44           | 45             | 46             | 47          | 48  | 49  | 50  | 51  | 52  | 53  | 54      |
| Rb     | Sr | Y  | Zr          | Nb             | Мо    | Тс               | Ru           | Rh             | Pd             | Ag          | Cd  | In  | Sn  | Sb  | Те  | I   | Xe      |
| 55     | 56 | 57 | 72          | 73             | 74    | 75               | 76           | 77             | 78             | 79          | 80  | 81  | 82  | 83  | 84  | 85  | 86      |
| Cs     | Ва | La | Hf          | Та             | W     | Re               | Os           | lr             | Pt             | Au          | Hg  | TI  | Pb  | Bi  | Ро  | At  | Rn      |
| 87     | 88 | 89 | 104         | 105            | 106   | 107              | 108          | 109            | 110            | 111         | 112 | 113 | 114 | 115 | 116 | 117 | 118     |
| Fr     | Ra | Ac | Rf          | Db             | Sg    | Bh               | Hs           | Mt             | Ds             | Rg          | Ср  |     | FI  |     | Lv  |     |         |

| 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68  | 69  | 70  | 71  |
|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| Се | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er  | Tm  | Yb  | Lu  |
| 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| Th | Pa | U  | Np | Pu | Am | Cm | Bk | Cf | Es | Fm  | Md  | No  | Lr  |





#### **Resonance Ionization Laser Ion Source**

### **Ionization of Cu**



| Ge 64<br>D4 s      | Gie 65<br>37 A                          | Giel 66<br>323 h         | Ge 67<br>18,7 m                         | Ge 55<br>ETU RE d | Ge 40<br>38.0-5    | Ge-70<br>21:23  | Ge 71<br>11.42 # | Ge 72<br>27,01   | Ge 73                    | Ge 74<br>35.94          | Ge 75            | Ge 76<br>7,44      |
|--------------------|-----------------------------------------|--------------------------|-----------------------------------------|-------------------|--------------------|-----------------|------------------|------------------|--------------------------|-------------------------|------------------|--------------------|
| 127.27             | A COLORADO                              | Contain a second         | timak:                                  | 20                | Part of the second |                 |                  | 14               | 44                       | -                       | 1.14             | Timese.            |
| Gii 60<br>31.4 p   | Ga 64<br>ZND m                          | 0a 65<br>15 H            | Ga 66<br>9.4 3                          | Ga-67<br>78.3.1   | Ga 68<br>87.83.14  | Ga 69<br>60,106 | Ba 70<br>21.78 m | Ga 71<br>30,000  | 0a 72<br>14,13           | Ga 73<br>4.80 h         | 5074<br>40, 414  | Ga75<br>Lin        |
| att a sub-         | CARL NO.                                | artanai<br>Harman<br>Har | 1 X000 2700.<br>4000 2700.<br>4000      | Section and       | Cartome .          |                 | PTER.            |                  | 17. 10.10<br>Aut. 1000   | 17 1.0.12<br>(17 10.28) | 1                | (illin             |
| Zis H2<br>Rithte   | 20 63<br>30.1 m                         | 21.64                    | 翻點                                      | 201.66<br>27,9    | Zis 67<br>(4,1)    | 21.68           | 20 69            | 2n 70<br>0.6     | 20171<br>884 894         | 20.72                   | 20 73<br>100 min | 20 74<br>30 8      |
| Alfan ten          | ALL MAL                                 | ALC: NO                  | 1982 - L                                | i te              |                    |                 | 12 mar.          | -stan-stan       | and the second           | and the second          | 100              | - 452 3345<br>1422 |
| Cult               | Cu 62<br>8,74 at                        | 部行                       | Cu 64                                   | SH BS             | Cu 66              | CU 67<br>81.9 k | Gu SR            | Ca 60<br>3.9 m   | Cu 70                    | Cu 71<br>18,8 s         | CU 72            | Cu 73<br>3.8 s     |
| Tell some or       | Sille .                                 |                          |                                         | +111              | Sile and           |                 | 整臣               | LAND AND         | -                        | Add Main                | San art          | Sec. in            |
| 141-80<br>241,2223 | Ni 61<br>1.140                          | NI 422<br>3.636          | NI-63-<br>100-6                         | N6.64<br>0.0211   | NI-96              | No.05<br>34,831 | Ni 67<br>21.e    | NK 00<br>2015    | PAL 405<br>11,4 w        | Ni 70<br>6.0.s          | NA 75<br>2381 s  | NJ 72<br>1,87 #    |
| 118.               |                                         |                          |                                         | the second        | Louis tree         | 14              | P-18-<br>CORPORE | Same             | Tiers and                | See. 14                 | -                | 1 mail             |
| C6 59<br>100       | Cio 60                                  | Ce-63                    |                                         | Ce 63<br>37.6 x   | Co MA              | Co 85           | Co 66            | Co 67<br>0.40 +  | Cit 68<br>0.36 k         | Co 69                   | Co 70<br>8.15 s  | Go 71<br>0.21 #    |
| -                  | and | Sellin .                 |                                         | Settine           | 6BM                | - AA<br>        | 100              | 535              | 8                        | 8                       |                  | r                  |
| Fit 58<br>11,38    | Fit 10<br>44,500 st                     | Fa 60<br>1,5 10° a       | Fe 61<br>6.0 m                          | Fi 但<br>381       | FeitD.<br>6,1 a    | Fe 64           | Fe dh<br>11.40 e | F# 66.<br>3.44 a | F# 87<br>0.47 8          | Pt# 88<br>13.7 a        | Fa ED<br>0378    |                    |
| 10                 | PURCHASE OF                             | 2.82                     | ALL | 27-23<br>1988     | P 67<br>Tall Tall  | Sa              | 11 A             | 0                | 2                        | -                       |                  | 44                 |
| Min 57<br>1,5 m    | Mr 58<br>ease bie                       | Mit 58<br>4,0 x          | Mit 60                                  | 623 ms            | 671 ms             | Min 64          | Mn 64<br>89 ms   | Min diff         | Mt 80<br>0.09 a<br>66 ms | Mn 67                   | Mn 68            | Mn 69<br>14 ms     |
| CIPTue our         | 読 (法)                                   | 17.3.4.4.8<br>           | 1                                       | 1 State           | Latte Ball         | 215 113         | 00 1113          | 00 1113          | 001113                   | 72 1113                 | 20 113           | 141115             |

# **Neutron-rich Mn isotopes from UC<sub>x</sub>/graphite target**

M. Hannawald et al., Phys. Rev. Lett. 82 (1999) 1391.

# Surface ionized background

| н                    | 1                       |          | lon             | izatio           | on po                  | otent            | ial: <           | < 5 e            | V                |                  |                  |                       |                 |                 |                  |          | He <sup>2</sup> |
|----------------------|-------------------------|----------|-----------------|------------------|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------------|-----------------|-----------------|------------------|----------|-----------------|
| Li                   | 3 4<br>Be               |          | lon             | izatio           | on po                  | otent            | ial: 5           | 5.0 -            | 5.8 (            | eV               |                  | 5<br><b>B</b>         | 6<br>C          | 7<br>N          | 8<br>0           | 9<br>F   | 10<br><b>Ne</b> |
| 1<br>Na              | 1 12<br>Mg              |          | lon             | izatio           | on po                  | otent            | ial: 5           | 5.8 -            | 6.5 (            | eV               |                  | 13<br><mark>Al</mark> | 14<br>Si        | 15<br>P         | 16<br>S          | 17<br>CI | 18<br><b>Ar</b> |
| 1<br><b>K</b>        | 9 20<br><mark>Ca</mark> | 21<br>Sc | 22<br>Ti        | 23<br>V          | 24<br>Cr               | 25<br>Mn         | 26<br>Fe         | 27<br>Co         | 28<br>Ni         | 29<br>Cu         | 30<br><b>Zn</b>  | 31<br><mark>Ga</mark> | 32<br>Ge        | 33<br><b>As</b> | 34<br>Se         | 35<br>Br | 36<br>Kr        |
| 3<br>Rb              | 7 38<br><b>Sr</b>       | 39<br>Y  | 40<br><b>Zr</b> | 41<br><b>Nb</b>  | 42<br><b>Mo</b>        | 43<br>Tc         | 44<br>Ru         | 45<br>Rh         | 46<br><b>Pd</b>  | 47<br><b>Ag</b>  | 48<br>Cd         | 49<br><b>In</b>       | 50<br>Sn        | 51<br><b>Sb</b> | 52<br><b>Te</b>  | 53<br>I  | 54<br><b>Xe</b> |
| 5<br><mark>Cs</mark> | 5 56<br>Ba              | 57<br>La | 72<br>Hf        | 73<br><b>Ta</b>  | <b>w</b> <sup>74</sup> | 75<br>Re         | 76<br><b>Os</b>  | 77<br>Ir         | 78<br>Pt         | 79<br><b>Au</b>  | 80<br><b>Hg</b>  | 81<br>TI              | 82<br><b>Pb</b> | 83<br>Bi        | 84<br><b>Po</b>  | 85<br>At | 86<br>Rn        |
| 8<br>Fr              | 7 88<br><b>Ra</b>       | 89<br>Ac | 104<br>Rf       | 105<br><b>Db</b> | 106<br>Sg              | 107<br><b>Bh</b> | 108<br><b>Hs</b> | 109<br><b>Mt</b> | 110<br><b>Ds</b> | 111<br><b>Rg</b> | 112<br><b>Cp</b> | 113                   | 114<br>FI       | 115             | 116<br><b>Lv</b> | 117      | 118             |

| 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68  | 69  | 70  | 71  |
|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er  | Tm  | Yb  | Lu  |
| 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| Th | Pa | U  | Np | Pu | Am | Cm | Bk | Cf | Es | Fm  | Md  | No  | Lr  |

#### **ISOLDE** beams around N=50



<sup>81</sup>Rb background is 150000 times more abundant than <sup>81</sup>Zn!





Combination of neutron converter and quartz transfer line provides <sup>81</sup>Zn/<sup>81</sup>Rb selectivity gain of 100000!

Nucl. Instr. Meth. B266 (2008) 4229.



E. Boucquerel et al., Nucl. Instr. Meth. B266 (2008) 4298.





# Elements ionizable with CVL or Nd-YAG pumped dye or Ti:Sa lasers

|    |    |    | eler | nents | s ioni | zed v | vith IS | SOL | DE R  | ILIS  |     |     |     |     |     |     |     |
|----|----|----|------|-------|--------|-------|---------|-----|-------|-------|-----|-----|-----|-----|-----|-----|-----|
| 1  |    |    |      |       |        |       |         |     |       |       |     |     |     |     |     |     | 2   |
| Н  |    | -  | test | ed io | nizat  | ion s | chem    | ie  |       |       |     |     |     |     |     |     | Не  |
| 3  | 4  |    |      |       |        |       |         |     |       |       |     | 5   | 6   | 7   | 8   | 9   | 10  |
| Li | Ве |    | pos  | sible | ioniz  | ation | sche    | eme | (unte | sted) |     | В   | С   | Ν   | 0   | F   | Ne  |
| 11 | 12 |    |      |       |        |       |         |     |       |       |     | 13  | 14  | 15  | 16  | 17  | 18  |
| Na | Mg |    |      |       |        |       |         |     |       |       |     | AI  | Si  | Ρ   | S   | CI  | Ar  |
| 19 | 20 | 21 | 22   | 23    | 24     | 25    | 26      | 27  | 28    | 29    | 30  | 31  | 32  | 33  | 34  | 35  | 36  |
| K  | Ca | Sc | Ti   | V     | Cr     | Mn    | Fe      | Co  | Ni    | Cu    | Zn  | Ga  | Ge  | As  | Se  | Br  | Kr  |
| 37 | 38 | 39 | 40   | 41    | 42     | 43    | 44      | 45  | 46    | 47    | 48  | 49  | 50  | 51  | 52  | 53  | 54  |
| Rb | Sr | Y  | Zr   | Nb    | Мо     | Тс    | Ru      | Rh  | Pd    | Ag    | Cd  | In  | Sn  | Sb  | Те  | I   | Xe  |
| 55 | 56 | 57 | 72   | 73    | 74     | 75    | 76      | 77  | 78    | 79    | 80  | 81  | 82  | 83  | 84  | 85  | 86  |
| Cs | Ва | La | Hf   | Та    | W      | Re    | Os      | lr  | Pt    | Au    | Hg  | ΤI  | Pb  | Bi  | Ро  | At  | Rn  |
| 87 | 88 | 89 | 104  | 105   | 106    | 107   | 108     | 109 | 110   | 111   | 112 | 113 | 114 | 115 | 116 | 117 | 118 |
| Fr | Ra | Ac | Rf   | Db    | Sg     | Bh    | Hs      | Mt  | Ds    | Rg    | Ср  |     | FI  |     | Lv  |     |     |

| 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68  | 69  | 70  | 71  |
|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er  | Tm  | Yb  | Lu  |
| 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| Th | Ра | U  | Np | Pu | Am | Cm | Bk | Cf | Es | Fm  | Md  | No  | Lr  |



Hyperfine Interactions 127 (2000) 417.





#### **Resonance frequency measurement via TOF method**

M. König et al., Int. J. Mass Spectr. Ion Proc. 142 (1995) 95.





#### Solving the <sup>70</sup>Cu mass puzzle

J. Van Roosbroeck et al., Phys. Rev. Lett. 92 (2004) 112501.



- R.N. Wolf et al., Nucl. Instr. Meth. A686 (2012) 82.
- R.N. Wolf et al., Int. J. Mass Spectrometry 349/350 (2013) 123.
- S. Kreim et al., Nucl. Instr. Meth. B 317 (2013) 492.







# Elements ionizable with CVL or Nd-YAG pumped dye or Ti:Sa lasers

|    | elements ionized with ISOLDE RILIS       |    |       |       |        |      |     |     |     |     |     |     |     |     |     |     |     |
|----|------------------------------------------|----|-------|-------|--------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1  |                                          |    |       |       |        |      |     |     |     |     |     | 2   |     |     |     |     |     |
| Н  |                                          |    | test  | ed io | nizati |      |     |     |     |     |     | He  |     |     |     |     |     |
| 3  | 4                                        |    |       |       |        |      |     |     |     |     |     |     | 6   | 7   | 8   | 9   | 10  |
| Li | Be possible ionization scheme (untested) |    |       |       |        |      |     |     |     |     |     | В   | С   | Ν   | 0   | F   | Ne  |
| 11 | 12                                       |    | refra | actor | y elei | ment | S   |     |     |     |     | 13  | 14  | 15  | 16  | 17  | 18  |
| Na | Mg                                       |    |       |       |        |      |     |     |     |     |     | AI  | Si  | Ρ   | S   | CI  | Ar  |
| 19 | 20                                       | 21 | 22    | 23    | 24     | 25   | 26  | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34  | 35  | 36  |
| K  | Ca                                       | Sc | Ti    | V     | Cr     | Mn   | Fe  | Co  | Ni  | Cu  | Zn  | Ga  | Ge  | As  | Se  | Br  | Kr  |
| 37 | 38                                       | 39 | 40    | 41    | 42     | 43   | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  |
| Rb | Sr                                       | Y  | Zr    | Nb    | Мо     | Тс   | Ru  | Rh  | Pd  | Ag  | Cd  | In  | Sn  | Sb  | Те  | I   | Xe  |
| 55 | 56                                       | 57 | 72    | 73    | 74     | 75   | 76  | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85  | 86  |
| Cs | Ва                                       | La | Hf    | Та    | W      | Re   | Os  | lr  | Pt  | Au  | Hg  | ΤI  | Pb  | Bi  | Ро  | At  | Rn  |
| 87 | 88                                       | 89 | 104   | 105   | 106    | 107  | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 |
| Fr | Ra                                       | Ac | Rf    | Db    | Sg     | Bh   | Hs  | Mt  | Ds  | Rg  | Ср  |     | FI  |     | Lv  |     |     |

| 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68  | 69  | 70  | 71  |
|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er  | Tm  | Yb  | Lu  |
| 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| Th | Ра | U  | Np | Pu | Am | Cm | Bk | Cf | Es | Fm  | Md  | No  | Lr  |





Eur. Phys. J. Spec. Topics 150 (2007) 293.

#### **Overview of molecular ISOL beams**

| Separation as XF <sup>+</sup> , XCI <sup>+</sup> |                     |          |           |                     |                     |                   |                 |                               | Separation as XO <sub>x</sub> <sup>+</sup> |          |          |                     | Separation as XCO <sup>+</sup> |          |                      |                       |          |  |
|--------------------------------------------------|---------------------|----------|-----------|---------------------|---------------------|-------------------|-----------------|-------------------------------|--------------------------------------------|----------|----------|---------------------|--------------------------------|----------|----------------------|-----------------------|----------|--|
| 1<br>H                                           |                     | _        | Sepa      | <mark>aratio</mark> | <mark>n as )</mark> | <mark>(F₂⁺</mark> |                 | Separation as XS <sup>+</sup> |                                            |          |          |                     | 2<br>He                        |          |                      |                       |          |  |
| 3<br>Li                                          | 4<br>Be             |          | Sep       | aratio              | n as )              | (F <sub>3</sub> + |                 | Sep                           | aratio                                     | n as I   | ΗX⁺      | 5<br><mark>B</mark> | б<br>С                         | 7<br>N   | 8<br>0               | 9<br>F                | 10<br>Ne |  |
| 11<br>Na                                         | 12<br>Mg            |          | Sepa      | aratio              | n as )              | <b>⟨F₄⁺</b>       |                 | Sep                           | aratio                                     | n as I   | VX⁺      | 13<br>Al            | 14<br>Si                       | 15<br>P  | 16<br><mark>S</mark> | 17<br><mark>CI</mark> | 18<br>Ar |  |
| 19<br>K                                          | <sup>20</sup><br>Ca | 21<br>Sc | 22<br>Ti  | 23<br>V             | 24<br>Cr            | 25<br>Mn          | 26<br>Fe        | 27<br>Co                      | 28<br>Ni                                   | 29<br>Cu | 30<br>Zn | 31<br>Ga            | 32<br><b>Ge</b>                | 33<br>As | 34<br>Se             | 35<br>Br              | 36<br>Kr |  |
| 37<br>Rb                                         | 38<br>Sr            | 39<br>Y  | 40<br>Zr  | 41<br><b>Nb</b>     | 42<br><b>Mo</b>     | 43<br><b>Tc</b>   | 44<br><b>Ru</b> | 45<br><b>Rh</b>               | 46<br>Pd                                   | 47<br>Ag | 48<br>Cd | 49<br>In            | 50<br>Sn                       | 51<br>Sb | 52<br>Te             | 53<br>                | 54<br>Xe |  |
| 55<br>Cs                                         | 56<br>Ba            | 57<br>La | 72<br>Hf  | 73<br>Ta            | 74<br>W             | 75<br><b>Re</b>   | 76<br><b>Os</b> | 77<br>Ir                      | 78<br>Pt                                   | 79<br>Au | 80<br>Hg | 81<br>TI            | 82<br>Pb                       | 83<br>Bi | 84<br>Po             | 85<br>At              | 86<br>Rn |  |
| 87<br>Fr                                         | 88<br>Ra            | 89<br>Ac | 104<br>Rf | 105<br>Db           | 106<br>Sg           | 107<br>Bh         | 108<br>Hs       | 109<br>Mt                     | 110                                        | 111      | 112      | 112                 | 112                            | 112      |                      |                       |          |  |

| 5  | 8 5 | 9 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68  | 69  | 70  | 71  |
|----|-----|---|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| Ce | Pr  | 1 | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er  | Tm  | Yb  | Lu  |
| g  | 0 9 | 1 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| Th | Pa  | l | U  | Np | Pu | Am | Cm | Bk | Cf | Es | Fm  | Md  | No  | Lr  |

Nucl. Instr. Meth. B266 (2008) 4229.

### **Nuclear chart at ISOLDE**





#### **Beam transport**

electrostatic beam transport is mass-independent (E=60 keV), but has space charge limit for high beam intensities (>10  $\mu$ A)  $\Rightarrow$  high current beams need magnetic beam transport




### Experimental access to r-process nuclides



# **Production of <sup>12</sup>C in stars**

|     |      | C 8     | C 9        | C 10    | C 11    | C 12   | C 13    | C 14    |
|-----|------|---------|------------|---------|---------|--------|---------|---------|
|     |      | 2E-21 s | 127 ms     | 19.3 s  | 20 m    |        |         | 5.7 ka  |
|     |      | B 7     | <b>B</b> 8 | В9      | B 10    | B 11   | B 12    | B 13    |
|     |      | 4E-24 s | 770 ms     | 8E-19 s |         |        | 20 ms   | 17 ms   |
|     |      | Be 6    | Be 7       | Be 8    | Be 9    | Be 10  | Be 11   | Be 12   |
|     |      | 5E-21 s | 53.3 d     | 7E-17 s |         | 1.5 Ma | 13.8 s  | 21 ms   |
|     |      | Li 5    | Li S       | Li 7    | Li 8    | Li 9   | Li 10   | Li 11   |
|     |      | 4E-22 s |            |         | 840 ms  | 178 ms | 2E-21 s | 8.5 ms  |
|     | He 3 | He /.   | He 5       | He 6    | He 7    | He 8   | He 9    | He 10   |
|     |      |         | 7E-22 s    | 807 ms  | 3E-21 s | 119 ms | 7E-21 s | 3E-21 s |
| H 1 | H 2  | H 3     |            |         |         |        |         |         |
|     |      | 12.3 a  |            |         |         |        |         |         |





# The triple-alpha process



# Setup for study of triple alpha reaction!



Reduced deadlayer

# Inverse reaction: <sup>12</sup>B(β,3α) decay





# The triple-alpha process: <sup>12</sup>B and <sup>12</sup>N decays

H.O.U. Fynbo et al., Nature 433 (2005) 136.





## **Development of pharmaceuticals**



20-80 healthy 100-300 patients x00-x000 patients volunteers



















- medium survival time, median survival time, survival benefit
- shows final benefit but not detailed mechanism
- more information from bio-distribution studies
- preferentially on-line with suitable radiotracers and small animal SPECT or PET





# New generation of small animal SPECT



systematic biodistribution studies with different radiotracers become possible with dedicated small animal SPECT





### **Radionuclides for RIT and PRRT**

| Radio-<br>nuclide | Half-<br>life | E mean<br>(keV)                   | Εγ (B.R.)<br>(keV)    | Range           | cross-  | fire                 |
|-------------------|---------------|-----------------------------------|-----------------------|-----------------|---------|----------------------|
| Y-90              | 64 h          | 934 β                             | -                     | 12 mm           | 1/      | Estab-               |
| I-131             | 8 days        | 182 β                             | 364 (82%)             | 3 mm            |         | isotopes             |
| Lu-177            | 7 days        | 134 β                             | 208 (10%)<br>113 (6%) | 2 mm            |         | Emerging<br>isotopes |
| Tb-161            | 7 days        | 154 β<br>5, 17, 40 e <sup>-</sup> | 75 (10%)              | 2 mm<br>1-30 µm |         | D 8 D                |
| Tb-149            | 4.1 h         | 3967 α                            | 165,                  | 25 µm           |         | isotopes:            |
| Ge-71             | 11 days       | 8 e-                              | -                     | 1.7 µm          |         | supply-<br>limited!  |
| Er-165            | 10.3 h        | 5.3 e⁻                            | -                     | 0.6 µm          | ♥       |                      |
|                   |               |                                   |                       |                 | localiz | ed                   |

Modern, better targeted bioconjugates require shorter-range radiation  $\Rightarrow$  need for adequate (R&D) radioisotope supply.



### Terbium: a unique element for nuclear medicine





# Theranostics with terbium isotopes

IS528 Collaboration: C. Müller et al., J. Nucl. Med. 53 (2012) 1951.





G.J. Beyer et al., Eur. J. Nucl. Med. Mol. Imaging 31 (2004) 547.







HPLC: high pressure liquid chromatography CE: capillary electrophoresis IMS: ion mobility spectroscopy EI/CI: electron impact/chemical ionization APCI: atmospheric pressure chem. ioniz. ICP: inductively coupled plasma MALDI: matrix assisted laser desorption/ioniz. ESI: electrospray ionization

S. Naylor and P.T. Babcock, Drug Discovery World (Fall 2010) 73.



Inductively Coupled Plasma-MS





#### MALDI-TOF matrix assisted laser desorption/ionization TOF



Matrix:

- · low vapor pressure for operation at low pressure
- polar groups for use in aqueous solutions
- strong absorption in UV or IR for efficient evaporation by laser
- · low molecular weight for easy evaporation
- · acidic: provides easily protons for ionization of analyte



## Mass selectivity of radio-frequency quadrupoles



H.-C. Chang, Annu. Rev. Anal. Chem. 2 (2009) 169.

# **Forensic applications**



- trace detection of drugs, poisons, explosives, etc.
- composition analysis of paint, tissue, etc.
- pesticide control
- measurement of isotopic composition
- etc.





- Cosmic radiation > spallation neutrons > <sup>14</sup>N(n,p)<sup>14</sup>C reactions
- Living organisms: equilibrium with atmospheric <sup>14</sup>C/<sup>12</sup>C ratio
- After death: <sup>14</sup>C/<sup>12</sup>C decreases due to <sup>14</sup>C decay (T<sub>1/2</sub>=5370 y)

Problem: measure <sup>14</sup>C<sup>+</sup> at ppt level without interference from <sup>14</sup>N<sup>+</sup>, <sup>12</sup>CH<sub>2</sub><sup>+</sup>, <sup>13</sup>CH<sup>+</sup>, <sup>28</sup>Si<sup>++</sup>, <sup>12</sup>C<sup>16</sup>O<sup>++</sup>, <sup>42</sup>Ca<sup>+++</sup>, <sup>56</sup>Fe<sup>++++</sup>,...

#### **Multistep-Separation in Accelerator Mass Spectrometry**

- 1. Negative ion formation
- <sup>14</sup>N<sup>-</sup> anions do not exist
- 2. Acceleration and stripping
- 3. Z-selective ion detector
- breakup of molecules  $\frac{dE}{dx} \sim \frac{Z^2}{E}$



Ion source with sample

Ion detector





# Aerosol composition in Swiss alpine valleys





### 6 MV tandem: the "working horse" for AMS



ETH Zürich, Laboratory for Ion Beam Physics

# 0.6 MV TANDY: the "working pony" for AMS



#### Routine measurements of: <sup>10</sup>Be, <sup>41</sup>Ca, <sup>129</sup>I, <sup>236</sup>U, Pu, etc. longer-lived than <sup>14</sup>C: geology, cosmochronology,...

ETH Zürich, Laboratory for Ion Beam Physics

MICADAS (Mini-radioCArbon-DAting-System): 0.2 MV AMS



Routine measurements of: <sup>14</sup>C

ETH Zürich, Laboratory for Ion Beam Physics



#### MUCADAS (MICRO-radioCArbon-DAting-System): 45 kV AMS

ETH Zürich, Laboratory for Ion Beam Physics

### **Retardation spectrometer**

- electrostatic energy measurement
- charged particles move against electrostatic potential; transmission measured as function of repulsive potential
- analyzes only the energy component perpendicular to the analyzer
- total energy measurement requires perfectly parallel beam



#### **Examples of MAC-E retardation spectrometer**

- 1. WITCH at ISOLDE: weak interaction studies via recoil detection after EC/β<sup>+</sup> decay
- 2. aSPECT at ILL: precision spectroscopy of angular correlation between neutron spin and decay protons
- 3. KATRIN in Karlsruhe: precision measurement of beta endpoint in tritium decay for neutrino mass determination



#### **Electrostatic filter with Magnetic Adiabatic Collimation**



## KATRIN experiment



~ 75 m linear setup with 40 s.c. solenoids < 1E-11 mbar < 1E-20 mbar <sup>3</sup>H







#### Identification **#** Separation

#### Identification:

The beam composition is determined but not changed. e.g. time-of-flight measurement,  $\Delta E$  measurement,...

# Separation: Beam contaminations are removed. e.g. mass separation, chemical separation,...

- Unique isotope selection requires the combination of at least two different identification/separation methods.
- A higher-fold combination gives improved suppression factors.

#### **Prism**



#### **Dispersive ion optical elements**



FIG. 5.15 A system with momentum dependent deflection of the central ray, showing lateral displacement due to momentum spread.

- · magnets are momentum dispersive
- electrostatic deflectors are energy dispersive
- Wien filters are velocity dispersive

### Focusing by tilted entrance/exit of magnetic field



FIG. 5.3 Particles leaving a magnetic field normal to the edge.



FIG. 5.4 Particles leaving a magnetic field at an angle to the edge. Dotted lines are for normal exit (cf. Fig. 5.3).

#### horizontal focusing effect





FIG. 5.5 Plan view of a positively charged particle entering a magnetic field directed into the paper. The trajectory makes an angle  $\beta$  with the normal. For view in the direction of arrow G see Fig. 5.6.



FIG. 5.6 View of Fig. 5.5 in the direction of arrow G. DE is the median plane on which  $H_z=0$ .

#### vertical defocusing effect



- 2. Focusing in x and defocusing in y (or vice versa).
- $\Rightarrow$  requires quadrupole doublet or triplet to focus in x and y

#### **Multipole correction elements**

Correction of higher-order effects (aberrations) by hexapole, octupole, etc. fields. Often limited by beam diagnostics!



Fig. 1. Squirrel-cage-like electrode arrangement of an electrostatic 2(n + 1) pole consisting of 18 wires, i.e. a squirrel-cage cage multipole for the cases of dipole  $(V_1 \neq 0)$ , quadrupole with n = 8. In this multipole the potential of each wire is controlled by a separate power supply.

M. Antl and H. Wollnik, Nucl. Instr. Meth. A274 (1989) 45.

#### **Ion-optical calculations**

1. Matrix calculation: TRANSPORT, COSY-INFINITY, GIOS, GICO, LISE++,...

2. MC simulations/ray tracing: SIMION, ZGOUBY, RAYTRACE, LISE++, MOCADI,...

### Focal plane of LOHENGRIN



P. Armbruster et al., Nucl. Instr. Meth. 139 (1976) 213.

#### **LOHENGRIN** focal plane



#### Measured kinetic energy distribution







Fig. 5. Horizontal displacement with respect to the central trajectory of a beam arising from a  $5 \times 70 \text{ mm}^2$  target vs the central trajectory length. The vertical dashed and dotted lines show respectively the extent of the pole pieces and the focal position.

G. Fioni et al., Nucl. Instr. Meth. A332 (2003) 175.

#### **LOHENGRIN Setup**

**Reverse Energy Dispersion magnet** 




## Measured kinetic energy distribution

 $\Rightarrow$  10-60% transmission (low for thick spectroscopy targets)





## Gamma decay of 7.6 µs <sup>98</sup>Y isomer



# The LOHENGRIN fission fragment separator



**lonic charge separation** 





Ionic charge state distribution

Ionic charge separation



## Ionic charge separation



Separation with gas-filled magnet



#### Isotope selection with gas-filled separators



#### **Multistep-Separation in Accelerator Mass Spectrometry**



## From ISOL beams to RIBs with higher energies

**ISOL** beams

- have well-defined energy ( $\Delta E/E \approx 1 eV / 60 keV$ )
- have usually small emittance (e.g. 10  $\pi$  mm mrad), i.e. limited opening angle
- have often well-defined ionic charge q=1
- Z selection is performed before the mass separator

**Recoils or fragments of nuclear reactions:** 

- have large energy spread
- large angular spread
- different ionic charge states
- depending on nuclear reaction different Z





#### **Requirements for in-flight separators**

G. Münzenberg, Nucl. Instr. Meth. B70 (1992) 265.

#### **Recoil separators**

- separate the products of a nuclear reaction (recoils) from the projectile beam
- early dumping of unwanted beam
- optionally also A/q separation of reaction products
- usually kinetic energies up to 10 MeV/nucleon
- mass dispersion achieved by combination of magnetic dipoles, electric dipoles or Wien filter
- usually additional quadrupoles for focusing



G. Münzenberg et al., Nucl. Instr. Meth. 161 (1979) 65.





A.G. Popeko et al., Nucl. Instr. Meth. A510 (2003) 371.

### **DGFRS: Dubna Gas-Filled Recoil Separator**



K. Subotic et al., Nucl. Instr. Meth. A481 (2002) 71.





#### **VAMOS** at GANIL



H. Savajols for the VAMOS Collaboration, Nucl. Instr. Meth. B204 (2003) 146.





Fig. 1. Schematic idea for S<sup>3</sup> showing the two stage separator.





D. Hutcheon, Nucl. Instr. Meth. A498 (2003) 190.



#### Normal kinematics: n, p or light ions on heavy target



## Inverse kinematics: heavy ions on light target





Momentum-loss achromat (Wedge separation)



Fig. 4. Schematic representation of the ion-optics used in a momentum-loss achromat to separate projectile fragments.

D.J. Morrissey and B.M. Sherill, Lecture Notes in Physics 651 (2004) 113.

#### LISE



R. Anne et al., Nucl. Instr. Meth. A257 (1987) 215. R. Anne et al., Nucl. Instr. Meth. B70 (1992) 276.

### **Dispersive ion optical elements**

- magnets are momentum dispersive
- electrostatic deflectors are energy dispersive
- Wien filters are velocity dispersive
- achromatic wedges are dispersive in mZ<sup>2</sup>/E or (Z/v)<sup>2</sup>
- RF kicker are flight time selective



K.H. Schmidt et al., Nucl. Instr. Meth. A260 (1987) 287.



T. Kubo, Nucl. Instr. Meth. B204 (2003) 97.



- > Stopped beam experiments, reaccelerated beam experiments
- Fast beam experiments
  - Secondary reaction
  - Reaction product identification (S800 spectrograph, CATE/Aladin, Silicon telescopes/TOF wall, SPEG)



Reaction product identification (S800 spectrograph, CATE/Aladin, Silicon telescopes/TOF wall, SPEG)

### Isotope selection at (high E) in-flight separators



Perfect isotope identification at high energy 1 A GeV <sup>238</sup>U on titanium





**Optimum energy for FRS-like momentum achromat** 

K.H. Schmidt, Euroschool Leuven 2000.



#### **BigRIPS at RIKEN, Japan**



T. Kubo, Nucl. Instr. Meth. B204 (2003) 97.



Fig. 4. Beam catcher locations in the first dipole stage of the preseparator. Depending on the fragment setting the primary beam will be dumped at the position given by the relative difference in magnetic rigidity. Plotted are trajectories of primary beams with different  $\delta_{B\rho}$  values in steps of 1%.

Fig. 5. Layout of the front part of the beam catcher. The V-shaped graphite block will absorb the beam energy of up to 50 kW and is actively cooled.

M. Winkler et al., Nucl. Instr. Meth. B266 (2008) 4183.



Fig. 1. Ion optical layout of the QDDD spectrograph. T – target chamber: ME – multipole element; D1, D2, D3 – dipole magnets; E,D, = electrostatic deflector; F – focal surface; D – detector chamber.

M. Löffler et al., Nucl. Instr. Meth. 111 (1973) 1.

# Example spectrum <sup>180</sup>Hf(d,p)



Fig. 3. An example of proton spectra from the reaction  $^{180}$  Hf( $\tilde{d}$ , p)<sup>181</sup>Hf. The peaks are labelled by the excitation energy in keV. The proton groups labeled with 'c' belong to contaminant isotopes.



## The SPEG spectrometer at GANIL





## <sup>9</sup>Be(<sup>3</sup>He,t)<sup>9</sup>B spectrum (at various scales)



C. Scholl et al. Phys. Rev. C84 (2011) 014308.



#### References

- Inorganic Mass Spectrometry: Principles and Applications, Sabine Becker, Wiley, 2007.
- Optics of Charged Particles, Hermann Wollnik, Academic Press 1987.
- Mass spectroscopy, H.E. Duckworth et al., Cambridge Univ. Press, 1986.
- The transport of charged particle beams, A.P. Banford, E. & F.N. Spon, 1966.
- Proceedings of the EMIS (Electromagnetic Isotope Separation) Conferences: Nucl. Instr. Meth. B317, B266, B204, B126, B70, ...