
Model Transformations and Code Generation

Ecole IN2P3 Temps Réel

Ansgar.Radermacher@cea.fr

2

École d’été, 26.11

• 08h30 – 10h00: Cours S1 – Component models CCM
and FCM (connectors)
� CCM – CORBA component model

� FCM – un modèle par composant flexible avec ports générique,
connecteurs et containers.

� Connecteurs : schéma d‘interaction et leur implémentation

• 10h30 – 12h00: Cours S2 – Déploiement
� Déploiement – instanciation des composants: choix des

implémentations, affection valeurs aux attributs, allocation sur
nœuds

� Utilisation du FCM pour supporter l’exécution modèles MARTE
� Mapping du MARTE GCM vers FCM et la chaine d’outil eC3M

� Rôle des bibliothèques modèles

3

Outline

• FCM: Flex-eWare (Flexible) component model
� Meta-model, main principles

� Derived UML profile

• FCM profile usage (demo)
� Ports

� Connectors defined in model libraries

• Link with MARTE
� Automatic MARTE/FCM synchronization (work in progress)

A flexible component model

• Different existing standards:
� UML,

� MARTE GCM

• With execution support
� CORBA Component Model (CCM v4, OMG formal/2006-04-01)

� Fractal (multiple implementations)

� Several academic approaches

� SOFA2, RUNES, TinyOS

� Outside embedded

� Service oriented architecture (SOA), OSGi (used by Eclipse, Spring)

� Web-services

5

CCM Excursus – CORBA Component model

• OMG Standard, lightweight profile exists

• Based on component / container pattern (separation of
concerns)

• Explicit declaration of used services (through ports)

• But … “mostly dead” (big specification, not many vendors,
afraid of CORBA)

• But … only pre-defined container with fixed services

• But …only supports small set of interaction patterns
… with specific and fixed implementations

� Synchronous method calls (via CORBA)

� Event based communications (only push/push style)

� Streaming (recently added)

CCM Excursus – CCM Ports

• Facets are provided interfaces for clients
(interfaces are defined in IDL in Java like syntax)

• Receptacles denote connection points
• Event Sources
• Event Sinks
• Streaming (not treated in this presentation)
• Attributes for configuration purposes

����No complex ports as in UML2 =
not possible to group related ports e.g. receptacle and
facet for an associated callback in a single port

facets

component reference supports
component’s equivalent interface

attributes

Receptacle

event source

event sink
(no
standardized
notation?!)

CCM Excursus – Ports (cont‘d)

CCM Excursus – Facets/Equivalent interface

• Facets = entry points for invocations (“server
interfaces”)

• Facets have independent object references

Equivalent interface
• Component has single distinguished equivalent
interface.

• Used by clients for navigation:
� Obtain facet reference from equivalent interface
(provide_facet and provide... methods).

� … and vice versa (get_component())

• … and connection of receptacles
� (connect and connect_... methods).

CCM Excursus – Receptacles

• Receptacles denote component‘s need to use services
provided by other components (“client interface”).

•When a component accepts object reference, this is
called a connection.

• Store a simple reference or multiple references

• Configuration
� Typically, connections are set-up during assembly

� Dynamically managed at runtime to offer interactions with clients or
other components (e.g. callback)

CCM Excursus – CCM Event + Home

• Connects a Producer and a Consumer
• Based on publish/subscribe pattern

� Events are mapped on “Consumer” interfaces
(associate push operation with event)

� Event publisher provide subscription operations

� Event sinks provide reference for data delivery (consumer)

• Event delivery always via a push/push model

• Homes: manage component lifecycle, in particular
creation
� provides factory & find method

� In addition: arbitrary user-defined methods

CCM Excursus – Component / Container Model

Container

Internal interface

Component
Executor

Comp.specific
context +

CCMContext

External
interface
(CORBA)

EnterpriseComponent

External
interface

CIF = Component Implementation Framework
standardizes which interfaces an executor has to implement

and which interfaces the executor can use
For each provided interface provide get_<port-name>
For each require interface, use getcnx_<port-name>

Internal
interface

(local IDL)

Re-used later!

12

Flex-eWare (Flexible) component model

• FCM: Flex-eWare (Flexible) component model
� Meta-model inspired by UML, Fractal and CCM

� Connector extension

• Basic principles
� UML like: components with

� Ports

� Hierarchical components: inner parts

� Connectors between parts

13

FCM – Extensions, differences with UML

• Ports are different compared to UML (next slide)

• Connectors have types and implementations

• Flexible containers (similar to QoS4CCM)

• Deployment in a D&C like manner
� Platform description (more elaboration required)

� Deployment of instances on a node

14

FCM Ports

• Ports are characterized by a type and a kind
• Use of an interface does not require an auxiliary class
definition (as in UML)

• Port kind has informal semantics
• Kind-specific mapping rules towards provided and
required interfaces

• Examples:
� Port kind “UseInterface”, type “MyInterface”

� Port kind “FeatureBasedCS”, type “ClientServerSpecification”po

� derived provided and required interfaces

• Important: port kinds are defined in a model library
and cn thus be extended

FCM Connectors

• Connector support allows to specify
� Interaction pattern during component development time

� Interaction implementation uring deployment time

• Basic principles: Connectors are …
� … like components: can be configured, have
implementations (Assembly implementations in case of
distribution) �

� … almost: ports don’t have fixed interface types,
connectors need to be instantiated (generated) from a
template like definition

composite

Connector Reification

• Model transformation:
eplace UML connector with a part

a : A b : B

composite

a : A b : Bconn :
methodCall_MyIntf::..

MyIntf

MyIntf

Connector type & implementation
need to be adapted to MyIntf

� Calculate binding based on port
type

� Instantiate package template
(next slide)

Declarative
information
about connector
type

17

Connector Adaptation

• Use UML package templates
� Own a signature with a template parameter (in most cases an

interface, here by convention called I)

� Template parameters are bound (template binding) when the
template is instantiated with a concrete type (interface)

� Example:

methodCall_MyIntf

OperationIDs

ID_myOp1
ID_myOp2

Bind I � MyIntf

18

Connector Adaptation (contd.)

• Adapt model:
� Replace occurrence of formal template parameter by actual (MyIntf)

� Replace occurrence of formal template parameter in operation
names (String template based on Acceleo)

� Adapt signature of operation to actual

• Adapt implementation
� Implementation is given in form of an Acceleo template, has access

to actual or an operation of actual.

� Implementation can perform “non trivial” operations such as
parameter marshalling in the context of a generic model
transformation (template controlled)

19

Connector Adaptation Example – Socket client stub

• For each operation in MyIntf, create operation with same
signature and implementation as given in the method body

• Access to all UML attributes of an operation (as in the UML MM)
+ some predefined helper functions, such as parametersInInout

name of element
(NamedElement)

Scope changes
to parameter

Connector Examples

• Basic Connectors – (domain specific) model libraries

� Synchronous calls via CORBA, OSEK-COM

� Asynchronous calls via Sockets, CORBA

� FIFO (local)

� ACCORD (MARTE calls with real-time feature)

• Connectors based on composition of basic ones

� FIFO – distributed via sockets, CORBA

� Connectors supporting Fault Tolerance

21

Delegate to
fragment port

Connectors enabling distribution

• Connector must be local to using component
���� connector itself needs to be distributed

• Implementations of distributed connectors have a
composite structure (D&C assembly implementations)
� Internal structure captured by UML composite structure diagram

• Example: socket connector consisting of two
fragments

Ports typed
with template
parameter I

22

Connector support

• Set of predefined connector libraries, available via
package import (from repository)

23

École d’été, 26.11

• 08h30 – 10h00: Cours S1 – Component models CCM
and FCM (connectors)
� CCM – CORBA component model

� FCM – un modèle par composant flexible avec ports générique,
connecteurs et containers.

� Connecteurs : schéma d‘interaction et leur implémentation

• 10h30 – 12h00: Cours S2 – Déploiement
� Déploiement – instanciation des composants: choix des

implémentations, affection valeurs aux attributs, allocation sur
nœuds

� Utilisation du FCM pour supporter l’exécution modèles MARTE
� Mapping du MARTE GCM vers FCM et la chaine d’outil eC3M

� Rôle des bibliothèques modèles

24

Container

• Embedded component executors (as in CCM)
• Standard container: not an entity of its own, does not
add any overhead

• Container supporting interception: manipulate port
references (see next slide)

• Containers supporting extensions

25

Deployment

• Instantiate System (a component implementation)
� An instance specification for the system

� Assign values (slots) to all properties

� Parts are typed with other components

� Case 1: concrete implementation

� Case 2: type/abstract implementation

�need to find suitable implementation first, based on

• Platform properties (supported OS, …)
• Non functional properties (not really supported yet)

� In particular interest for connectors

�Slot value = instance-value, recursive instance specification (tree)

Socket_instance

attrib1 (non primitive)

attrib2 (primitive)

26

Deployment

• Initial creation of deployment plan (screendump)
• Right-click on system implementation

� => chose create deployment plan

� Resulting deployment plan has fixed name, will be put into
DeploymentPlans package

Packaging and Deployment

• Define “what” (which implementation) needs to be
deployed
[called component package in CCM]

• Define configuration, i.e. fix attribute values

• Define allocation (“where” to deploy instances)

CCM Excursus – Deployment plan

static deployment

Assembly &
Deployment

Tool

Component
Package

Component
Package

Component
Package

Deployment plan

Specification of
instances, their
properties & connections
between these (ports)

...

Describe connections, i.e. binding
of ports between component
instances

=> Get Component Assembly
Descriptors (XML)

dynamic deployment

bootloader file, static
linkage with components

Instantiate and connect on
node by means of daemon

already started there

29

Deployment plan

• Create a deployment plan
(CCM, i.e. OMG D&C terminology)

• Plan = set of instances (UML instance specifications)
� Each instance references an implementation (UML class)

� Each instance has a set of slots for configuring attributes

� Each instance may be deployed on a node

30

Allocation

• Instances may be allocated onto nodes
• Create a new deployment diagram

� Drag&Drop nodes from platform description and instances from the
deployment plan (instance specifications) into diagram.

� Establish an Allocation relationship between these (create an
abstraction between instance and node and stereotype it with the
MARTE stereotype allocate, Use the profile section of the property
dialog).

� Allocation of composites:
� based on the following rule: if a contained part is allocated on a node,
the composite is implicitly allocated on that node as well.

31

Deployment plan instantiation

• Instantiation of the deployment plan corresponds to
a sequence of transformations

• Two stage transformation (Chokri’s presentation)

Initial user
Model

copy New
Model

Model per node

• Connector reification
• Container expansion
• Component - OO mapping patterns
• (required interface => accessor method, …

Model per node

Distribute to node

C++ code C++ code

Standard C++ generator

32

Accord Service

f (…)
marshall,
enqueue

Accord Integration

• Specific connector, fragments implement
(unmodified) code

• Container responsible for tasks that are not port
specific, such as the handling of the requests in
progress

State machine
(pre/post cond.)

dispatch

RealTimeObject

Real-Time component
RTO_stub

Integration into an MDA approach

• Component instances and interconnections specified
with Papyrus UML (www.papyrusuml.org)

� Composite structure diagram

� Deployment diagram

• Profiles
� FCM profile

� Deployment and configuration

� Connectors

� , for specific contexts: QoS + FT profile

Tool Chain

Profile
FCM

Model
Library

Profile
MARTE

Component
descriptions

Modeling environment IDL/IDL3
descriptions

Deployment
XML (CDP, CCD)

bootcode /
connector

code

Packaging
tool

Binary
(per node)

Transformations
model � text : Acceleo
model � model : currently Java

ATL, QVT

35

GCM Mapping

• MARTE GCM ports
� Map GCM ports to specific port kinds

� Example:

� ClientServer Specification => port kind of same name within model
library. Port can be typed by client server specification

• MARTE GCM PpUnits, RtUnit
� Map to container extension of same name,

� currently supported RtUnit

36

OO patterns + container

• How to map ports on OO concepts?
(similar to CCM CIF)
� For each port providing an interface, get_<portName> will return

either the component reference or a reference of an inner part
(delegation)

� Depending on container type, might return a reference t o a
wrapper.

� Unlike in CCM, implementation of this operation is done by system

� For each port requiring an interface, getcnx_<portName> will return
a reference to the connected service

