@li:t

macher@cea.fr

Ecole d’'été, 26.11

e 08h30 - 10h00: Cours S1 - Component models CCM
and FCM (connectors)
= CCM - CORBA component model

= FCM - un modele par composant flexible avec ports generigue,
connecteurs et containers.

= Connecteurs : schéma d'interaction et leur implémentation

e 10h30 - 12h00: Cours S2 - Déploiement

= Déploiement - instanciation des composants: choix des
implémentations, affection valeurs aux attributs, allocation sur
noeuds

= Utilisation du FCM pour supporter I'exécution modeles MARTE
= Mapping du MARTE GCM vers FCM et la chaine d’outil eC3M

ROle des bibliotheques modeles

Outline

e FCM: Flex-eWare (Flexible) component model
= Meta-model, main principles
= Derived UML profile
e FCM profile usage (demo)
= Ports
= Connectors defined in model libraries

e Link with MARTE
= Automatic MARTE/FCM synchronization (work in progress)

A flexible component model

o Different existing standards:
= UML,
= MARTE GCM

e With execution support
CORBA Component Model (CCM v4, OMG formal/2006-04-01)
Fractal (multiple implementations)

Several academic approaches
= SOFA2, RUNES, TinyOS

Outside embedded
= Service oriented architecture (SOA), OSGi (used by Eclipse, Spring)
= Web-services

CCM Excursus — CORBA Component model

OMG Standard, lightweight profile exists

Based on component / container pattern (separation of
concerns)

Explicit declaration of used services (through ports)

But ... "mostly dead” (big specification, not many vendors,
afraid of CORBA)

But ... only pre-defined container with fixed services

But ...only supports small set of interaction patterns
... With specific and fixed implementations

= Synchronous method calls (via CORBA)

= Event based communications (only push/push style)

= Streaming (recently added)

CCM Excursus - CCM Ports

|

e Facets are provided interfaces for clients
(interfaces are defined in IDL in Java like syntax)

e Receptacles denote connection points

e Event Sources

e Event Sinks

o Streaming (not treated in this presentation)
o Attributes for configuration purposes

TLT

>No complex ports as in UML2 =
not possible to group related ports e.g. receptacle and
facet for an associated callback in a single port

CCM Excursus - Ports (cont'd)

component reference supports
component’s equivalent interface Receptacle

facets 4 ? ~ /
z - (

event sink

«— standardized
notation?!)

| - C)
attributes — CG —.

event sou

—

———

CCM Excursus - Facets/Equivalent interface

e Facets = entry points for invocations (V'server
interfaces”)

e Facets have independent object references

Equivalent interface

e Component has single distinguished equivalent
interface.

e Used by clients for navigation:

= Obtain facet reference from equivalent interface
(provi de _facet and provide... methods).

= .. and vice versa (get _conponent ())

e ... and connection of receptacles
= (connect and connect_... methods).

CCM Excursus — Receptacles

e Receptacles denote component's need to use services
provided by other components (“'client interface”).

e When a component accepts object reference, this is
called a connection.

e Store a simple reference or multiple references

e Configuration
= Typically, connections are set-up during assembly

= Dynamically managed at runtime to offer interactions with clients or
other components (e.g. callback)

CCM Excursus — CCM Event + Home

e Connects a Producer and a Consumer

e Based on publish/subscribe pattern

= Events are mapped on “"Consumer” interfaces
(associate push operation with event)

= Event publisher provide subscription operations
= Event sinks provide reference for data delivery (consumer)

e Event delivery always via a push/push model

e Homes: manage component lifecycle, in particular
creation

= provides factory & find method
= In addition: arbitrary user-defined methods

CCM Excursus - Component / Container Model

CIF = Component Implementation Framework
standardizes which interfaces an executor has to implement
and which interfaces the executor can use
For each provided interface provide get_<port-name>
For each require interface, use getcnx_<port-name>

Re-used later!

~

Container

/

l EnterpriseComponent g\

External Component
Interface Executor
(CORBA) c
Internal
Interface
(local IDL)
Internal interface

————

C

External
interface

-
-,
-
-

Comp.specific

context +
CCMContext

12

Flex-eWare (Flexible) component model

e FCM: Flex-eWare (Flexible) component model
= Meta-model inspired by UML, Fractal and CCM
= Connector extension

e Basic principles
= UML like: components with
= Ports
= Hierarchical components: inner parts
= Connectors between parts

13

FCM - Extensions, differences with UML

e Ports are different compared to UML (next slide)

e Connectors have types and implementations

e Flexible containers (similar to QoS4CCM)

e Deployment in a D&C like manner
= Platform description (more elaboration required)
= Deployment of instances on a node

14

FCM Ports

Ports are characterized by a type and a kind

Use of an interface does not require an auxiliary class
definition (as in UML)

Port kind has informal semantics

Kind-specific mapping rules towards provided and
required interfaces

Examples:

= Port kind “Uselnterface”, type “"Mylnterface”

= Port kind “"FeatureBasedCS"”, type “ClientServerSpecification”po
= derived provided and required interfaces

Important: port kinds are defined in a model library
and cn thus be extended

FCM Connectors

e Connector support allows to specify
= Interaction pattern during component development time

= [Interaction implementation uring deployment time

e Basic principles: Connectors are ...
= ... like components: can be configured, have
implementations (Assembly implementations in case of
distribution)

= ... almost: ports don't have fixed interface types,
connectors need to be instantiated (generated) from a

template like definition

Llist

Connector Reification

e Model transformation:
eplace UML connector with a part

4)

composite Connector type & implementation

need to be adapted to MylIntf

MyIntf
a:A b:B = Calculate binding based on port
type

Myintf = Instantiate package template
(nextste)/

. = \
!Declarat_lve composite /
information 7

about connector /
a:.A l : conn . : l b:B
methodCall_MyiIntf::..

e

type

17

Connector Adaptation

e Use UML package templates
= Own a signhature with a template parameter (in most cases an
interface, here by convention called I)

= Template parameters are bound (template binding) when the
template is instantiated with a concrete type (interface)

(BasicCalls)
| methodCall % 1 - Interface
= Example:
AsyncCalll SyncCall |
methodCall_Myintf
. OPC_providel OPC_usel

OperationIDs <enumeration»
D myOpl Bind | © Mylntf OperationlDs
ID_myOp2 £l ID_<%name%>

Ce:] list

18

Connector Adaptation (contd.)

e Adapt model:
= Replace occurrence of formal template parameter by actual (MyIntf)

= Replace occurrence of formal template parameter in operation
names (String template based on Acceleo)

= Adapt signature of operation to actual

e Adapt implementation

= Implementation is given in form of an Acceleo template, has access
to actual or an operation of actual.

= Implementation can perform “non trivia

|II

operations such as

parameter marshalling in the context of a generic model
transformation (template controlled)

19

Connector Adaptation Example - Socket client stub

For each operation in MyIntf, create operation with same
signature and implementation as given in the method body

Access to all UML attributes of an operation (as in the UML MM)
+ some predefined helper functions, such as parametersInInout

. | . ——
£F Outline 22 %] % | #|= 8 method body =
g al| |// create buffer for ASM.1 data types |
i s Attt i char buffer [MESSAGE BUFFER SIZE];
» 3 methodCall char * pBuffer = &buffer[MESSAGE_BUFFER SIZE]; /f/ grows backwards
- B3 AsyncCall int encodedSize = 0; // total size of encoded buffer
_ Asnlen 1temSize; /4 size of an encoded 1tem
~ B3 PSacket_impl = 1nt operationID = ID_ <%names;
- E Client_impl i name of element
I /f now marshall in and inout parameters wia ASN.1 (NamedE|ement)
el <%for (parametersInIinout) {%>
£z m_nodelD: Lang { I
= m_staticlD: Long = -f:‘?styp:_a.cppTypeBs:- varMame_ASM = <%namef:>; Scope changes
1temSize = BEncAsnContent (&pBuffer, &varName_ ASN);
@ b <%name%> encodedSize += 1temSize; to parameter
i FromClient_impltoSock ¥
. e <% %>
~s FromClient_impltoASHN
A FromClient_impltoSock encodedSize += encodeRequestMessage (&pBuffer, operationID, m staticID);

i ; : 1 += 1 =
Foeiet reiliomel] encodedsize BEncDeflen (&pBuffer, encodedSize); L

i FromClient_impltoOpera // send message to i1ts destination
Ais 3 OPC usel 1t (!SocketRuntime::getSocket (m_nodelID)-=write ((byte*] pBuffer, encodedsSize)) {

2 // throw CORBA::SystemException (]; =
[& Composite diagram of . 1 oo —

4]

i |]

4

Connector Examples

e Basic Connectors - (domain specific) model libraries
= Synchronous calls via CORBA, OSEK-COM
= Asynchronous calls via Sockets, CORBA

= FIFO (local)
= ACCORD (MARTE calls with real-time feature)

e Connectors based on composition of basic ones
= FIFO - distributed via sockets, CORBA
= Connectors supporting Fault Tolerance

Llist

21

Connectors enabling distribution

e Connector must be local to using component
= connector itself needs to be distributed

o Implementations of distributed connectors have a
composite structure (D&C assembly implementations)
= Internal structure captured by UML composite structure diagram

o Example: socket connector consisting of two

fragments
Delega‘te to ConnSocket
fragment port \
client: SocketClient [1] server: SocketServer [1]
fconn: T [rconn: T [1]
Ports typed -
with template feonn:i T [1] rconn: T [1]

parameter |

22

Connector support

o Set of predefined connector libraries, available via
package import (from repository)

“0 Libraries to import:

Select an item to open (? = any character, * = any string): -

[

Matching items:

] VAT THTHLVE T Y eSS

B VARTE Library
[¥] XMLPrimitiveTypes

eC3M Basic Calls Library

B =C3M connectors for MARTE =

Libraries already imported: (Read-only table)
#] UMLPrimitiveTypes

23

Ecole d’'été, 26.11

e 08h30 - 10h00: Cours S1 - Component modeils CCM
and FCM (connectors)
= CCM - CORBA component model

= FCM - un modele par composant flexible avec ports générique,
connecteurs et containers.

= Connecteurs : schéma d'interaction et leur implémentation

e 10h30 - 12h00: Cours S2 - Déploiement

= Déploiement - instanciation des composants: choix des
implémentations, affection valeurs aux attributs, allocation sur
nosuds

= Utilisation du FCM pour supporter I'exécution modeles MARTE “C"\
= Mapping du MARTE GCM vers FCM et la chaine d’outil eC3M ——

.Role des bibliotheques modeles

24

Container

Embedded component executors (as in CCM)

Standard container: not an entity of its own, does not
add any overhead

Container supporting interception: manipulate port
references (see next slide)

Containers supporting extensions

25

Deployment

e Instantiate System (a component implementation)

= An instance specification for the system
= Assign values (slots) to all properties

= Parts are typed with other components
= Case 1: concrete implementation
= Case 2: type/abstract implementation
= need to find suitable implementation first, based on
« Platform properties (supported OS, ...)
« Non functional properties (not really supported yet)
= In particular interest for connectors
= Slot value = instance-value, recursive instance specification (tree)

] Socket_instance

Aimattribl (non primitive)

— attrib2 (primitive)

26

Deployment

e Initial creation of deployment plan (screendump)

e Right-click on system implementation
= => chose create deployment plan

= Resulting deployment plan has fixed name, will be put into
DeploymentPlans package

Packaging and Deployment
o Define “"what” (which implementation) needs to be

deployed
[called component package in CCM]

e Define configuration, i.e. fix attribute values

e Define allocation ("where” to deploy instances)

Component
Package

Component
Package

Component
Package

CCM Excursus — Deployment plan

Deployment plan
Specification of
instances, their
properties & connections
between these (ports)

Describe connections, i.e. binding
of ports between component
Instances

=> Get Component Assembly

Descriptors (XML)

static deployment

\ Assembly &

Deployment
Tool

. | bootloader file, static

dynamic deployment

\ linkage with components

Instantiate and connect on
node by means of daemon
already started there | ="

29

Deployment plan

e Create a deployment plan
(CCM, i.e. OMG D&C terminology)

e Plan = set of instances (UML instance specifications)
= Each instance references an implementation (UML class)
= Each instance has a set of slots for configuring attributes
= Each instance may be deployed on a node

30

Allocation

e Instances may be allocated onto nodes

e Create a new deployment diagram

= Drag&Drop nodes from platform description and instances from the
deployment plan (instance specifications) into diagram.

= Establish an Allocation relationship between these (create an
abstraction between instance and node and stereotype it with the
MARTE stereotype allocate, Use the profile section of the property
dialog).

= Allocation of composites:

= based on the following rule: if a contained part is allocated on a node,
the composite is implicitly allocated on that node as well.

31

Deployment plan instantiation

e Instantiation of the deployment plan corresponds to
a sequence of transformations

e Two stage transformation (Chokri’s presentation)

copy » Connector reification

« Component - OO mapping patterns

/ \ (required interface => accessor method,
Distribute to node

l l Standard C++ generator

32

Accord Integration

e Specific connector, fragments implement
(unmodified) code

e Container responsible for tasks that are not port
specific, such as the handling of the requests in
progress

‘ : D) £ :
Accord Service Real-Time component

RTO_stub RealTimeObiject

il
f(..) State machine
marshall, (pre/post cond.) []/D%D
enqueue dispatch

J

. J

Integration into an MDA approach

e Component instances and interconnections specified
with Papyrus 7 UML (www.papyrusuml.org)

= Composite structure diagram
= Deployment diagram

e Profiles
= FCM profile
= Deployment and configuration
= Connectors

= maRTE . for specific contexts: QoS + FT profile

Tool Chain

Modeling environment IDL/IDL3
descriptions
Component Model ~ 5
"y . . eployment
descriptions Library Packaging v\ (cpp, ccp)
tool
Profile Profile 1

e VARTE \ ‘ Sm bootcode /
_, connector
code
Papyrus UML2 c : l

Modeler
s v - Transformations Binary
s T /. model = text : Acceleo (per node)
il o e L ot e o model = model : currently Java

' ATL, QVT

—

=B

35

GCM Mapping

e MARTE GCM ports

= Map GCM ports to specific port kinds

= Example:

= ClientServer Specification => port kind of same name within model
library. Port can be typed by client server specification

e MARTE GCM PpUnits, RtUnit

= Map to container extension of same name,
= currently supported RtUnit

36

OO0 patterns + container

e How to map ports on OO concepts?
(similar to CCM CIF)

= For each port providing an interface, get_<portName> will return
either the component reference or a reference of an inner part

(delegation)
[] []\%

= Depending on container type, might return a reference t o a
wrapper.

= Unlike in CCM, implementation of this operation is done by system

= For each port requiring an interface, getcnx_<portName> will return
a reference to the connected service

