@li:t

Model Transformations and Code Generati

Ecole IN2P3

Agenda

e Introduction on Model Transformations and Code Generation ~ 30 mins

e Practical Work ~ 90 mins

e Results Discussion ~ 15 mins

Model Transformations and Code Generation

Model Transformations: Purpose

e Generating a new model from a source model—according to formally
defined rules—to:

Extract an interesting subset of the source model (Query)
= Example: Find all classes that have multiple parents

Generate a new model, based on a different metamodel, that is "equivalent”
to the source model (Transformation)

= Example: Create a queueing network model of a UML model to facilitate performance
analysis

= Example: UML to Java transformation for code generation
= Definition of "equivalence” depends on the purpose

Represent the source model from a particular viewpoint (View)
= In effect, just a special case of Transformation

Courtesy of Bran Selic — Malina Software Corp.

A Basic Representation of Model Transformation

e Source to target mapping based on pre-defined transformation rules
= Conceptually similar to source code compilation

MM1 to MM2
Transformation
Rules

Metamodel
MM2

Metamodel
MM1

A4

Courtesy of Bran Selic — Malin

Model Transformations: Styles

(1) Source element (2) Source pattern
to target pattern to target element

(3) Source pattern Courtesy of Bran Selic — Malina Software_Cerp:
_____ totarget pattern

e

M2M Transformations

e Examples
= Model refinement
= Model abstraction
= View generation
= Design pattern application

e Some languages
XSLT

MOF 2 Queries / Views / Transformations (QVT)
= ATL (QVT like) (interpretation)
= Smart-QVT (generation)

Java

M2M transformation with Java

Iterator<PackageahleElement> iter = selectedPackage.getPackagedElement=s() .iterator (] ;
while (iter.haslNext ()] |
PackageakhleElement currentElement = iter.next(]:;

if (currentElement instanceof Class) |
currentElement.setName (currentElement . getNamwe () +" impl™) ;

Package 0

|
|
|
|
|
|
. sdataTypes

ControlServer ConnectionManager eoataTypes ControelServer_impl ConnectionManager_impl
Token . Token
Transformaﬂc}

M2T Transformations

e Examples
= Code generation
= Documentation generation
= Input format of specialized tools (e.g. analysis tools)

e Some languages

MOF to Text (standard)
= No existing full implementation

Template-based implementations (Eclipse M2T project)
= Acceleo
= Xpand
= JET

Java

10

M2T transformation using Acceleo

<%

metamodel http://www.eclipse.org/umli2/2.0.0/UML

00>

<%script type ="uml.Class" name ="GenerateClass" file ="<%fullFilePath%>"%>

<%ovisibility%> class <%name%> {

public <%name%> ({ };

ControlServer

Generation>

public class ControlServer {

public ControlServer () { };

11

Summary

e Model transformation is a key element of model-based development
= Similar to compiling but has a larger scope
= Convert models to equivalent models for several purposes
= Model-based analysis
= Application synthesis (code generation)
= Documentation generation

= Model refactoring
= Model refinement

e Several languages and styles
= M2M, M2T
= Declarative or imperative transformation languages

e A lot of work remains to deal with
= Scalability issues
= Performance issues
= Optimization issues
= Traceability issues

12

Practical Work

13

From UML models to binary application

Code generation

case closea:
swilvin (ewid

case 1ocok:
cross_transition(closed. Lock) :

P

case openeca:

swilvin (ewid

C/C++/JAVA...

9 Classes

T

@@

Executable UML model

v

1 Activities

Components

State Machines
Scenarios 1

No equivalent concepts in high-
level programming languages!

fUML (Foundational executable
UML subset)

Code compilation

0110011001
1001011111
1000001111
0000111100

Application

/

14

Two alternatives for code generation

e Implicit mapping: embed the code generation rules in the code generator

= Pros:
» Perform a M2T transformation only
= Cons:
= Complex code generator, hard to maintain
= Cannot easily use a new mapping (pattern)
» Difficulties to debug the model (indirect mapping between model concept and code concepts)

o Explicit mapping: built a "canonical” model that contains only concepts
provided by the targeted high-level programming language (fUML subset)
= Pros:
= Separation of concerns (UML - fUML - code)
= Simple code generator (one to one mapping, easy to maintain)
» Facilitates debug of the canonical model

= Cons:

= Multiple model transformations (M2M + M2T)

15

Pattern for state machines code generation

Canonica model

Behaviora aspect
(State Machine) \
Regulator
| e
Regulator - currentState : RegStat_
+ start() 5 + start()
+ stop() [S HD:: > + stop
~checkPreCond()
. scheckPostCond
Behavior Pattern Weaving
E— \‘l el . —
CurentState : State _—" Current active —
<MeCond()\>\§l state Code
. >—< - .
.. <checkPostCond() — > .-~ generation
Checks state and j
L R p— concurrency Issues

(Class)

Updates current state after
transition triggering

16

Work description

e Objective:

= Write the M2M transformation in order to generate the canonical model
containing concepts of OO programming languages only.

= Apply a given design pattern for state machines.

UML model with
State machines

Equivalent fUML model
(without state machines)

C++ code of the model

2
T

Focus of the
practical work

17

Pattern Description

ControlServer e Implement the following steps:

@ oty e . = Add an Enumeration type named

§: p“’%o “StatesEnum” containing an

. recume) enumeration literal for each state of

the state machine.

= Add a property named
“stateConfiguration” typed by the
previously created Enumeration.

uoljewojsue. |

ControlServer

[

stateConfiguration: StatesEnurm [1] {unigue}

#ENLIMEY: atian:
g, :EEEFOWEO [ControlZerer: ControlX.
= StatesEnum H
& oo T = Add a checkPreCond() operation.
@ pause]) E] Ready
g fEhSUT;O Cond(in SRC ting): EvStat B2 Active
% checkPreGond(in ornpeting): EvState E
& checkPostCond(in SRCDrnghEg) e
[El StatesEnum u Add a CheCkPOStCOnd() Operatlonl

