
Model Transformations and Code Generation

Ecole IN2P3 Temps Réel

Chokri.Mraidha@cea.fr

2

Agenda

• Introduction on Model Transformations and Code Generation ~ 30 mins

• Practical Work ~ 90 mins

• Results Discussion ~ 15 mins

3

Model Transformations and Code Generation

4

Model Transformations: PurposeModel Transformations: Purpose

• Generating a new model from a source model—according to formally
defined rules—to:

� Extract an interesting subset of the source model (Query)

� Example: Find all classes that have multiple parents

� Generate a new model, based on a different metamodel, that is “equivalent”

to the source model (Transformation)

� Example: Create a queueing network model of a UML model to facilitate performance
analysis

� Example: UML to Java transformation for code generation

� Definition of “equivalence” depends on the purpose

� Represent the source model from a particular viewpoint (View)

� In effect, just a special case of Transformation

Courtesy of Bran Selic – Malina Software Corp.

5

• Source to target mapping based on pre-defined transformation rules

� Conceptually similar to source code compilation

M1

M2
MM1 to MM2

Transformation
Rules

MM1 to MM2
Transformation

Rules

A Basic Representation of Model TransformationA Basic Representation of Model Transformation

model2
: MM2

model2model2
: MM2: MM2

model1
: MM1

model1 model1
: MM1: MM1

Transformation
Mapping

Transformation
Mapping

Metamodel
MM1

MetamodelMetamodel
MM1MM1

Metamodel
MM2

MetamodelMetamodel
MM2MM2

Courtesy of Bran Selic – Malina Software Corp.

6

(1) Source element
to target pattern

Model Transformations: StylesModel Transformations: Styles

(2) Source pattern
to target element

(3) Source pattern
to target pattern

Courtesy of Bran Selic – Malina Software Corp.

7

M2M Transformations

• Examples

� Model refinement

� Model abstraction

� View generation

� Design pattern application

• Some languages

� XSLT

� MOF 2 Queries / Views / Transformations (QVT)
� ATL (QVT like) (interpretation)

� Smart-QVT (generation)

� Java

8

M2M transformation with Java

Transformation

9

M2T Transformations

• Examples

� Code generation

� Documentation generation

� Input format of specialized tools (e.g. analysis tools)

• Some languages

� MOF to Text (standard)
� No existing full implementation

� Template-based implementations (Eclipse M2T project)

� Acceleo

� Xpand

� JET

� Java

10

M2T transformation using Acceleo

<%
metamodel http://www.eclipse.org/uml2/2.0.0/UML
%>

<%script type ="uml.Class" name="GenerateClass" file ="<%fullFilePath%>"%>

<%visibility%> class <%name%> {

public <%name%> (){ };

}

public class ControlServer {

public ControlServer () { };

}

Generation

11

Summary

• Model transformation is a key element of model-based development

� Similar to compiling but has a larger scope

� Convert models to equivalent models for several purposes
� Model-based analysis

� Application synthesis (code generation)

� Documentation generation

� Model refactoring

� Model refinement

� …

• Several languages and styles

� M2M, M2T

� Declarative or imperative transformation languages

• A lot of work remains to deal with

� Scalability issues

� Performance issues

� Optimization issues

� Traceability issues

12

Practical Work

13

13

From UML models to binary application

Executable UML model

0110011001
1001011111
1000001111
0000111100

Application

C/C++/JAVA…

Code generation Code compilation

• Classes
• Activities
• Components
• State Machines
• Scenarios

No equivalent concepts in high-
level programming languages!

fUML (Foundational executable
UML subset)

14

Two alternatives for code generation

• Implicit mapping: embed the code generation rules in the code generator

� Pros:
� Perform a M2T transformation only

� Cons:

� Complex code generator, hard to maintain

� Cannot easily use a new mapping (pattern)

� Difficulties to debug the model (indirect mapping between model concept and code concepts)

• Explicit mapping: built a “canonical” model that contains only concepts
provided by the targeted high-level programming language (fUML subset)

� Pros:

� Separation of concerns (UML � fUML � code)

� Simple code generator (one to one mapping, easy to maintain)

� Facilitates debug of the canonical model

� Cons:

� Multiple model transformations (M2M + M2T)

15

BehaviorPattern

CurrentState : State

checkPreCond()

checkPostCond()

Pattern for state machines code generation

- currentState : RegStates

+ start()
+ stop()
-checkPreCond()

-checkPostCond()

Regulator

Weaving

Code
generation

…

Regulator

+ start()
+ stop()

On Off
start

stop

Structural aspect
(Class)

Behavioral aspect
(State Machine)

Current active
state

Checks state and
concurrency issues

Updates current state after
transition triggering

Canonical model

16

Work description

• Objective:

� Write the M2M transformation in order to generate the canonical model
containing concepts of OO programming languages only.

� Apply a given design pattern for state machines.

UML model with
State machines

Equivalent fUML model
(without state machines)

C++ code of the modelM2M M2T

Focus of the
practical work

17

Pattern Description

• Implement the following steps:

� Add an Enumeration type named
“StatesEnum” containing an
enumeration literal for each state of
the state machine.

� Add a property named
“stateConfiguration” typed by the
previously created Enumeration.

� Add a checkPreCond() operation.

� Add a checkPostCond() operation.

T
ransform

ation

