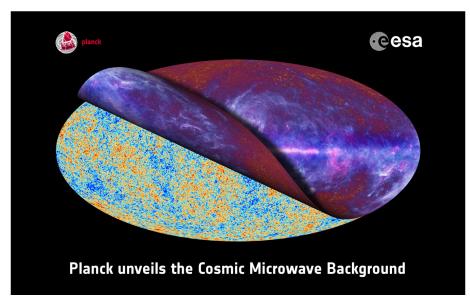
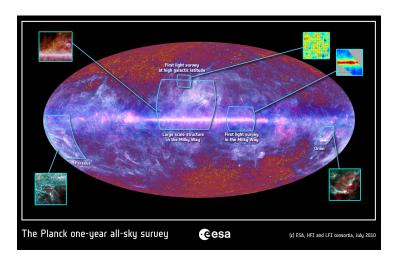


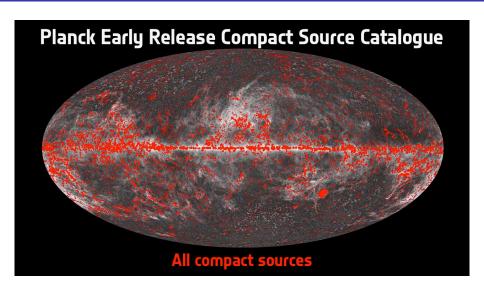
La séparation de composantes dans Planck


Maude Le Jeune (APC / IN2P3 CNRS, Paris) Ingénieur de recherche en Calcul Scientifique

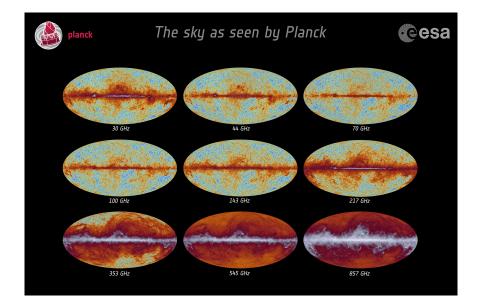
Journée des nouveaux entrants, 25 mars 2015, LPNHE



La séparation de composantes

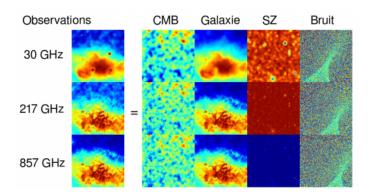


L'émission galactique



rayonnement synchrotron, de freinage, raies de CO, rayonnement thermique des poussières, etc

Les sources compactes

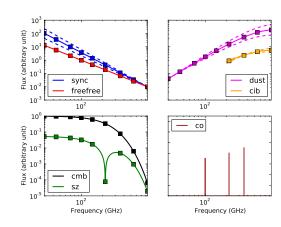


étoiles, galaxies, amas de galaxies

On observe le ciel à différentes fréquences, que l'on combine pour obtenir une carte propre du CMB

Principes de la séparation de composantes

- ullet Le ciel que l'on observe est la somme de plusieurs composantes $X_i=A_iS(+N_i)$
- On peut reconstruire exactement le CMB si on connaît la matrice de mélange

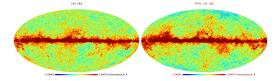

$$\hat{S} = A^{-1}X \tag{1}$$

• Problème : on ne connaît pas complètement A mais on peut essayer de l'estimer

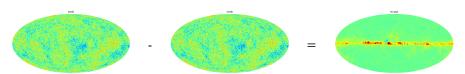
Principes de la méthode SMICA (Cardoso et al 2008)

On se base sur 2 hypothèses :

- On connait parfaitement la loi d'émission du CMB a_{cmb} (corps noir)
- Les lois d'émission des autres composantes sont différentes (diversité spectrale)

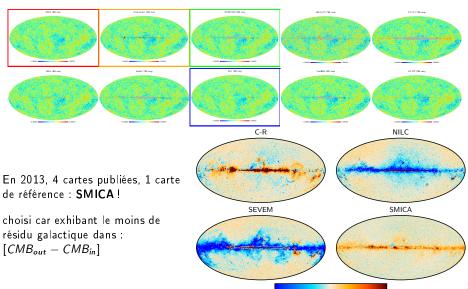


Les forces de la méthode :

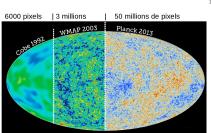

- On est capable d'estimer A avec aucun autre a priori que la diversité spectrale
 → Idéal pour "nettoyer" le CMB
- On est aussi capable de tester des a priori en ajoutant des contraintes sur les lois d'émission → intéressant pour affiner nos connaissances sur les avants plans

Validation et paramétrage de la méthode

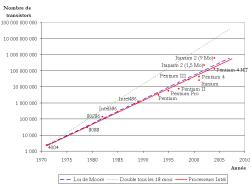
- Construire un jeu de données simulées : 9 cartes du ciel
 - dont on connaît le CMB \rightarrow CMB_{in}
 - dont l'émission galactique ressemble à celle qu'on observe


- 2 Appliquer la méthode de séparation de composantes sur ces simulations $o extit{CMB}_{out}$
- $oldsymbol{\circ}$ Est-ce qu'on a bien nettoyé le CMB des avants-plans? [$CMB_{out}-CMB_{in}$]

On affine les réglages de la méthode jusqu'à ce que le résiduel soit satisfaisant!


Sélection des méthodes sur 5 années d'analyse

En 2008 : 10 compétiteurs internationaux, 4 équipes retenues pour la publication


Un peu de calcul

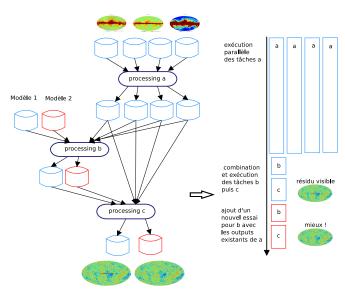
La résolution des instruments augmente : volume croissant des données

Temps entre WMAP et Planck	10 ans
Volume des données (1 carte)	x 17
Temps de calcul (1 carte)	x 70*
Nombre de cartes (fréq)	x 2
Loi de Moore (x2 / les 2 ans)	x 32

Dans le même temps, la puissance des ordinateurs augmente : loi de Moore

* Les analyses spectrales coûtent $N_{pixel}^{\frac{3}{2}}$

Un outil de gestion de pipeline


a : pre-processing long, mais parallèle

b : ajustementc : reconstruction

du cmb

→ Parallélisation des tâches
 → On ne calcule que ce qui est nécessaire
 → Tracabilité,

comparaison

Résultats en "une" du Monde le 17 mars 2013

