
OpenCL On FPGA

Marc Gaucheron

INTEL Programmable Solution Group

Ecole Numérique 2016

IN2P3, Aussois, 21 Juin 2016

Agenda

2

FPGA architecture overview

Conventional way of developing with FPGA

OpenCL: abstracting FPGA away

ALTERA BSP: abstracting FPGA development

Live Demo

Developing a Custom OpenCL BSP

FPGA architecture overview

FPGA Architecture: Fine-grained Massively Parallel

4

Millions of reconfigurable logic elements

Thousands of 20Kb memory blocks

Thousands of Variable Precision DSP blocks

Dozens of High-speed transceivers

Multiple High Speed configurable Memory

Controllers

Multiple ARM© Cores

I/
O

I/O

I/O

I/O

Let’s zoom in

FPGA Architecture: Basic Elements

5

1-bit configurable

operation

Configured to perform any

1-bit operation:

AND, OR, NOT, ADD, SUB

Basic Element

1-bit register

(store result)

FPGA Architecture: Flexible Interconnect

6

Basic Elements are surrounded with a

flexible interconnect

…

FPGA Architecture: Flexible Interconnect

7

Wider custom operations are implemented by

configuring and

interconnecting Basic Elements

…

…

FPGA Architecture: Custom Operations Using Basic Elements

8

Wider custom operations are implemented by

configuring and

interconnecting Basic Elements

…

16-bit add

Your custom 64-bit

bit-shuffle and encode

32-bit sqrt

…

…

FPGA Architecture: Memory Blocks

9

Memory

Block

20 Kb

addr

data_in

data_out

Can be configured and grouped using

the interconnect to create various

cache architectures

FPGA Architecture: Memory Blocks

10

Memory

Block

20 Kb

addr

data_in

data_out

Can be configured and grouped using

the interconnect to create various

cache architectures

Lots of smaller

caches

Few larger

caches

FPGA Architecture: Floating Point Multiplier/Adder Blocks

11

data_in

Dedicated floating point

multiply and add blocks

data_out

DSP block architecture

12

Floating-Point DSP Fixed-Point DSP

Elementary math functions supporting floating point

13

Basic Floating Point

FPAdd

FPAddExpert

FPAddN

FPSubExpert

FPAddSub \

FPAddSubExpert

FPFusedAddSub

FPMul

FPMulExpert

FPConstMul

FPAcc

FPSqrt

FPDivSqrt

FPRecipSqrt

FPCbrt

FPDiv

FPInverse

FPFloor

FPCeil

FPRound

FPRint

FPFrac

FPMod

FPDim

FPAbs

FPMin

FPMax

FPMinAbs

FPMaxAbs

FPMinMaxFused

FPMinMaxAbsFused

FPCompare

FPCompareFused

Exp, Log and Power

FPLn

FPLn1px

FPLog10

FPLog2

FPExp

FPExpFPC

FPExpM1

FPExp2

FPExp10

FPPowr

Trig with argument reduction

FPSinX

FPCosX

FPSinCosX

FPTanX

FPCotX

Inverse trigonometric functions

FPArcsinX\

FPArcsinPi

FPArccosX

FPArccosPi

FPArctanX

FPArctanPi

FPArctan2

Trigonometrics of pi*x

FPSinPiX

FPCosPiX

FPTanPiX

FPCotPiX

Trigonometrics misc

FPHypot

FPRangeReduction

Conversion

FXPToFP

FPToFXP

FPToFXPExpert

FPToFXPFused

FPToFP

Macro Operators

FPFusedHorner

FPFusedHornerExpert

FPFusedHornerMulti

FPFusedMultiFunction

Fixed and floating point

Floating point only

Coverage of ~70 elementary math functions

Patented & published efficient mapping to FPGA hardware

 Polynomial approximation, Horner’s method, truncated multipliers, …

Compliant to OpenCL & IEEE754 accuracy standards

Rounding mode options for fundamental operators

Half- to Double-precision

FPGA Architecture: Configurable Connectivity = Efficiency

14

Blocks are connected into

a custom data-path that matches your

application.

Streaming data-path more efficient

than copying to/from global memory

15

1GHz
Core Performance

5.5M
Logic Elements

1TB/s
3D SIP Integration

70%
Up to

Lower Power

10 Up to

 TFLOPS 14 nm Intel

Tri-Gate

Security

Most

Comprehensive
Cortex-A53

Quad-Core

ARM Processor

Heterogeneous up to

Developing with FPGA

17

18

Typical Programmable Logic Design Flow

Synthesis (Mapping)
 - Translate design into device specific primitives

 - Optimization to meet required area & performance constraints

 - Quartus II synthesis, Precision Synthesis, Synplify/Synplify Pro,

 Design Compiler FPGA

 - Result: Post-synthesis netlist

Design specification

Place & route (Fitting)
 - Map primitives to specific locations inside

 target technology with reference to area &

 performance constraints

 - Specify routing resources to be used

 - Result: Post-fit netlist

Design entry/RTL coding
 - Behavioral or structural description of design

RTL simulation

 - Functional simulation

(Mentor Graphics ModelSim® or other 3rd-party simulators)

 - Verify logic model & data flow

 (no timing delays)

 LE
M512

M4K/M9K I/O

19

Typical Programmable Logic Design Flow

Timing analysis
 - Verify performance specifications were met

 - Static timing analysis

Gate level simulation (optional)
 - Timing simulation

 - Verify design will work in target technology

PC board simulation & test
 - Simulate board design

 - Program & test device on board

 - Use on-chip tools for debugging

tclk

Application Development Paradigm

20

ASIC

FPGA
Programmers

Parallel

Programmers

Standard CPU Programmers

The magic trick ?

21

FpgaC

HDL Coder

OpenCL Concepts

22

Setting the right expectations

23

We have to think data parallelism

Algorithms have to be rethink

at the mathematics level.

OpenCL C Language

Derived from ISO C99
 No standard C99 headers, function pointers, recursion, variable length arrays, and bit fields

Additions to the language for parallelism
 Work-items and workgroups

 Vector types

 Synchronization

Address space qualifiers

Built-in functions

OpenCL Kernels: Parallel Threads

A kernel is a function executed on an

Accelerator device
 Array of threads, in parallel

All threads (or work-items) execute the

same code, can take different paths

Each thread has an ID
 Select input/output data

 Control decisions

float x = input[threadID];

float y = func(x);

output[threadID] = y;

OpenCL Kernels: Divide into Workgroups

Threads in workgroups can cooperate with each through fast local (on-chip)

memory

Data Organization

27

Memory hierarchy

Thread:
 Registers

Thread:
 Private memory

Workgroups:
 Local or Shared memory

All Workgroups:
 Global memory

OpenCL: abstracting FPGA away

Altera OpenCL Program Overview

2010 research project
 Toronto Technology Center

2011 Development started
 Proof of concept

 9 customer evaluations

2012 Early Access Program
 Demo’s at Supercomputing ‘12

 Over 60 customer evaluations

2013 First public release
 Publically available May 2013

 Passed Conformance Testing

>8500 programs run properly

Public release 13.1 (Nov 2013)
 Channels (Streaming IO)

 Example Designs

 SoC Support

Release 14.0 (June 2014)
 Platforms

 Emulator/Profiler

 Rapid Prototyping

Release 14.1 (Nov 2014)
 Arria 10 support

 Shared Virtual Memory (PoC)

Release 15.1 (Nov 2015)
 Kernel Update

 Library support

30

OpenCL Use Model: Abstracting the FPGA away

31

Host Code

main() {
 read_data(…);
 manipulate(…);
 clEnqueueWriteBuffer(…);
 clEnqueueNDRange(…,sum,…);
 clEnqueueReadBuffer(…);
 display_result(…);
}

Standard

gcc Compiler

EXE

Host

Accelerator

Altera Offline

Compiler

AOCX

__kernel void sum
 (__global float *a,
 __global float *b,
 __global float *y)
{
 int gid = get_global_id(0);
 y[gid] = a[gid] + b[gid];
}

Verilog

Quartus II

OpenCL Accelerator Code

SoC FPGA combines these

in single device

OpenCL on GPU/Multi-Core CPU Architectures

32

Conceptually many parallel threads

Simplified View
 Each thread runs sequentially on a different processing element (PE)

 Fixed #s of Functional Units, Registers available on each PE

 Many processing elements are available to provide significant parallel speedup

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

L2

Memory

Work Distribution Host CPU

L2

Memory

L2

Memory

L2

Memory

L2

Memory

L2

Memory

OpenCL on FPGA

33

OpenCL kernels are translated into a highly parallel circuit
 A unique functional unit is created for every operation in the kernel

Memory loads / stores, computational operations, registers

 Functional units are only connected when there is some data dependence dictated by the kernel

Pipeline the resulting circuit with a new thread on each clock cycle to keep

functional units busy

Amount of parallelism is dictated by the number of pipelined

computing operations in the generated hardware

Example Pipeline for Vector Add

On each cycle the portions of the pipeline are

processing different threads

While thread 2 is being loaded, thread 1 is being

added, and thread 0 is being stored

Load Load

Store

0 1 2 3 4 5 6 7

8 threads for vector add example

Thread IDs

+

Example Pipeline for Vector Add

On each cycle the portions of the pipeline are

processing different threads

While thread 2 is being loaded, thread 1 is being

added, and thread 0 is being stored

Load Load

Store

0
1 2 3 4 5 6 7

8 threads for vector add example

Thread IDs

+

Example Pipeline for Vector Add

On each cycle the portions of the pipeline are

processing different threads

While thread 2 is being loaded, thread 1 is being

added, and thread 0 is being stored

Load Load

Store

0

1
2 3 4 5 6 7

8 threads for vector add example

Thread IDs

+

Example Pipeline for Vector Add

On each cycle the portions of the pipeline are

processing different threads

While thread 2 is being loaded, thread 1 is being

added, and thread 0 is being stored

Load Load

Store

1

2

3 4 5 6 7

8 threads for vector add example

Thread IDs

+

0

Example Pipeline for Vector Add

On each cycle the portions of the pipeline are

processing different threads

While thread 2 is being loaded, thread 1 is being

added, and thread 0 is being stored

Load Load

Store

2

3

4 5 6 7

8 threads for vector add example

Thread IDs

+

0

1

Mapping a simple program to an FPGA

39

R0  Load Mem[100]
R1  Load Mem[101]
R2  Load #42
R2  Mul R1, R2
R0  Add R2, R0
Store R0  Mem[100]

High-level code

Mem[100] += 42 * Mem[101]

CPU instructions

CPU activity, step by step

40

A
R0  Load Mem[100]

A
R1  Load Mem[101]

A
R2  Load #42

A
R2  Mul R1, R2

A
R0  Add R2, R0

Store R0  Mem[100]
A

Time

On the FPGA we unroll the CPU hardware…

41

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

Space

… and specialize by position

42

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

1. Instructions are fixed. Remove “Fetch”

… and specialize

43

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

1. Instructions are fixed. Remove “Fetch”

2. Remove unused ALU ops

… and specialize

44

A

A

A

A

A

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]
A

1. Instructions are fixed. Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

… and specialize

45

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

1. Instructions are fixed. Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly! And

propagate state.

… and specialize

46

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

1. Instructions are fixed. Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly! And

propagate state.

5. Remove dead data.

… and specialize

47

R0  Load Mem[100]

R1  Load Mem[101]

R2  Load #42

R2  Mul R1, R2

R0  Add R2, R0

Store R0  Mem[100]

1. Instructions are fixed. Remove “Fetch”

2. Remove unused ALU ops

3. Remove unused Load / Store

4. Wire up registers properly! And

propagate state.

5. Remove dead data.

6. Reschedule!

Custom data-path on the FPGA matches your algorithm!

48

Build exactly what you need:

Operations

Data widths

Memory size & configuration

Efficiency:

Throughput / Latency / Power

load load

store

42

High-level code

Mem[100] += 42 * Mem[101]

Custom data-path

What Hardware do we produce?

49

PCIe

DDRx

Flow control logic

Load

Store

Mult-add

Load

Done?

OpenCL-specific iterators

CRA

M
e
m

o
ry

In
te

rc
o
n
n
e
c
t

ALTERA SDK for OpenCL

Development Flow & Features

50

OpenCL CAD Flow

mm_kernel.cl
mm_host.c

CLANG

front end

System

Description C compiler

ACL

runtime

Library

program.exe

Optimizer

Unoptimized LLVM

IR

Optimized LLVM IR

RTL generator Verilog
PCIe

DDR*
QSYS

Quartus

Third Party

or

Academic

Tools

CLANG

front end

Unoptimized LLVM

IR

Front End
Parses OpenCL extensions and

intrinsics – produces LLVM IR

51

OpenCL CAD Flow

mm_kernel.cl
mm_host.c

CLANG

front end

System

Description C compiler

ACL

runtime

Library

program.exe

Optimizer

Unoptimized LLVM

IR

Optimized LLVM IR

PCIe

DDR*
QSYS

Quartus

Third Party

or

Academic

Tools
Optimizer

Optimized LLVM IR

Middle End
Code optimizations such as loop

unrolling and branch elimination

leading to more efficient HW

52

RTL generator Verilog

OpenCL CAD Flow

vectorAdd_kernel.cl
mm_host.c

CLANG

front end

System

Description C compiler

ACL

runtime

Library

program.exe

Optimizer

Unoptimized LLVM

IR

Optimized LLVM IR

RTL generator Verilog
PCIe

DDR*
QSYS

Quartus

Third Party

or

Academic

Tools

RTL generator Verilog

Back End
Conversion of Intermediate

representation into custom generated

pipelined hardware

53

OpenCL CAD Flow

mm_kernel.cl
mm_host.c

CLANG

front end

System

Description C compiler

ACL

runtime

Library

program.exe

Optimizer

Unoptimized LLVM

IR

Optimized LLVM IR

RTL generator Verilog
PCIe

DDR*
QSYS

Quartus

Third Party

or

Academic

Tools

PCIe

DDR*
Kernel to IP

Interconnect

Architecture Gen
Create interfaces to the outside world.

Needs to meet timing without user

intervention.

54

OpenCL Kernel Development Flow

55

Modify kernel.cl

x86 Emulator (sec)

Optimization Report (sec)

Profiler (hours)

Functional Bugs?

Stall-free pipeline? Memory

coalesced?

Hardware

performance met?

DONE!

x86 emulator

56

Enable functional debug on x86 system of kernel code
 Prototype support to allow users run kernels on x86 platform

 Debug support for Altera vendor specific debug support such as channels

Supports
 OpenCL syntax

 Channels

 Printf

kernel void accel(…) {

 …

 gid = get_global_id(0);

 out[gid] =

 proc(data[gid]);

 …

}

x86

Kernel Compiler

./kernel_tb…

…

Running …

Profiler

57

Instrument the pipeline with performance counters and profiling logic

Transfer the profiling information to the host via PCIe link

Kernel Pipeline

Load

Store

+

Load

Memory Mapped

Registers

kernel void accel(…) {

 …

 gid = get_global_id(0);

 out[gid] = a[gid]+b[gid];

 …

}

Guaranteed Timing Flow

58

kernel.cl

AOC

Synthesis / P&R / STA on the OpencL

Kernels ONLY

Reconfig kernel PLL

 DONE!

Post-fit QXP partition (PCIe, UniPHY,

DMA, …) Boardspec.xml

Re-run STA with the new PLL

value

Meet

Timing

No

Yes

Optimization Report Example: Load to Store dependency

59

 kernel void prefixsum(global int* restrict A, unsigned N) {

 for (unsigned i = 1 ; i < N ; i++) {

 int a = A[i-1];

 A[i] += a;

 }

}

==

| *** Optimization Report *** |

==

| Kernel: prefixsum | Ln.Col |

==

| Loop for.body | 2.25 |

| Pipelined execution inferred. | |

| Successive iterations launched every 321 cycles due to: | |

| | |

| Memory dependency on Load Operation from: | 3.21 |

| Store Operation | 4.7 |

| Largest Critical Path Contributors: | |

| 49%: Load Operation | 3.21 |

| 49%: Store Operation | 4.7 |

===

Relative cost of global memory

to local computation

True fix requires restructuring

the code

1

2

3

4

5

6

Optimization Report Example: Accumulating a value

60

==

| *** Optimization Report *** |

==

| Kernel: test | Ln.Col |

==

| Loop for.body | 5.24 |

| Pipelined execution inferred. | |

| Successive iterations launched every 3 cycles due to: | |

| | |

| Data dependency on variable mul | 4.10 |

| Largest Critical Path Contributor: | |

| 100%: Fmul Operation | 6.7 |

==

kernel void test(global float* restrict input,

 global float* restrict output, unsigned N)

{

 float mul = 1.0f;

 for (unsigned i = 0; i < N; i++) {

 mul *= input[i];

 }

 *output = mul;

}

1

2

3

4

5

6

7

8

9

Architecture Visualizer (Hidden)

61

Hierarchical

and interactive

Detailed Area Report (aocl analyze-area)

62

Per-line area break-down.
 Very useful, as single careless line of code can burn many FPGA resources.

Additional Altera OpenCL Collateral

63

White papers on OpenCL

OpenCL online demos

OpenCL design examples

Instructor-Led training
 Parallel Computing with OpenCL Workshop by Altera – (1 Day)

 Optimization of OpenCL for Altera FPGAs Training by Altera – (1 Day)

Online training
 Introduction to Parallel Computing with OpenCL

 Writing OpenCL Programs for Altera FPGAs

 Running OpenCL on Altera FPGAs

 Single-Threaded vs. Multi-Threaded Kernels

 Building Custom Platforms for Altera SDK for OpenCL

OpenCL board partners page

http://www.altera.com/products/software/opencl/opencl-index.html
http://www.altera.com/products/software/opencl/opencl-index.html
http://www.altera.com/support/examples/opencl/opencl.html
http://www.altera.com/education/training/trn-index.jsp
http://www.altera.com/education/training/trn-index.jsp
http://www.altera.com/education/training/trn-index.jsp
http://www.altera.com/education/training/courses/IOPNCL110
http://www.altera.com/education/training/courses/IOPNCL210
http://www.altera.com/education/training/trn-index.jsp
http://www.altera.com/education/training/courses/OOPNCL100
http://www.altera.com/education/training/courses/OOPNCL200
http://www.altera.com/education/training/courses/OOPNCL300
http://www.altera.com/education/training/courses/OOPNCLKERN
http://www.altera.com/education/training/courses/OOPNCLKERN
http://www.altera.com/education/training/courses/OOPNCLKERN
http://www.altera.com/education/training/courses/OOPNCLKERN
http://www.altera.com/education/training/courses/OOPNCLKERN
http://www.altera.com/education/training/courses/OOPNCLCSTBOARD
http://www.altera.com/products/software/partners/opencl/opencl-board-partner-index.html

ALTERA BSP: abstracting FPGA development

65

An adaptable Board Support Package

OpenCL Domain

PCIe gen3x8 Host Interface

In
te

rc
o

n
n

e
c

t

DDR3 Memory Interface

DDR3 Memory Interface

Kernel

IP

Kernel

IP

DDR

DDR

Host

10Gb MAC/UOE Data Interface

10Gb MAC/UOE Data Interface

10G Network

QDRII Memory Interface

QDRII Memory Interface

JESD204

XCVRs

QDR

QDR

A/D

SDI

Prebuilt

BSP with standard HDL

Tools by FPGA

Developer

Built with

Altera

OpenCL

Compiler

IO Infrastructure

Channels Advantage

66

Standard OpenCL Altera Vendor Extension

Host Interface

CvP Update

In
te

rc
o

n
n

e
c
t

DDR3 Interface

10Gb

Interface

10Gb Interface

DDR3 Interface

QDRII Interface

QDRII Interface

QDRII Interface

QDRII Interface
OpenCL

Kernels

OpenCL

Kernels

DDR

DDR

QDR

QDR

QDR

QDR

10G

Host Host Interface

CvP Update

In
te

rc
o

n
n

e
c
t

DDR3 Interface

10Gb

Interface

10Gb Interface

DDR3 Interface

QDRII Interface

QDRII Interface

QDRII Interface

QDRII Interface
OpenCL

Kernels

OpenCL

Kernels

DDR

DDR

QDR

QDR

QDR

QDR

Host

Network
10G

 Network

IO and Kernel Channels

Start with OpenCL ready platforms 1/2

67

HPC Applications Network Applications

Start with OpenCL ready platforms 2/2

68

Shared Virtual Memory (SVM) Platform Model

OpenCL 1.2
 Traditional Hosted Heterogeneous

Platform

OpenCL 2.0
 New Hosted Heterogeneous Platform

with SVM

69

Global

Memory

DEV

1

Host

Memory
CPU

Global

Memory

DEV

…

Global

Memory

DEV

N

Shared Virtual Memory

Global

Memory

DEV

1

Host

Memory
CPU

Global

Memory

DEV

…

Global

Memory

DEV

N

PCIe

QPI

CAPP PSL
CAPI

VIP based BSP Customization

70

Video to
Kernel

Video from
kernel

Kernel

External
Memory

HPS

EMIF
Controller

Bridges and
Adapters

Native PHY
(RX)

Native PHY
(TX)

SDI (RX)

SDI (TX)

CVI VFB DC FIFO

DC FIFOCVO VFB

External
Memory

Sys PLL
Kernel

PLL

Video
In

Video
Out

Live Demo

Developing a Custom OpenCL BSP

Deep Dive

72

Recommended Hardware

73

Development system
 Available PCIe slot (if using PCIe-based accelerator card)

 x86 based development system

 Altera device documentation defines minimum recommended system RAM

FPGA accelerator card
 PCIe interface or SoC

 DDR3 or DDR4 External Memory

 Embedded USB blaster or JTAG header

Software Requirements

74

Operating system: 64-bit1

 Microsoft 64-bit Windows 7 on the x86-64 architecture
 Red Hat Enterprise 64-bit Linux (RHEL) 6.0 on the x86-64 architecture

Quartus Prime
 Accelerator devices installed

 Quartus Prime license

Altera SDK for OpenCL
 Must match Quartus Prime version

 Altera SDK for OpenCL License

C compiler for host code
 E.g. Microsoft® Visual Studio or GCC
 Needed to compile the host program
 Able to compile and link 64-bit code

Except when targeting a SoC host

1. CentOS, Ubuntu and Windows 8 supported in a future version of the Quartus

software

SDK Components

75

AOCL Utility
 Perform various tasks related to the board, drivers, and compile process

Altera Offline Compiler (AOC)
 Translates your OpenCL C kernel source file into an FPGA hardware image ready to be loaded onto

the Altera FPGA

Host Libraries
 Provides the OpenCL host Platform API and Runtime API to be used by OpenCL host applications

 Libraries for the host program to link to

Altera OpenCL (AOCL) Utility

76

Custom Platforms must support a set of aocl utilities
 Executables delivered in a subdirectory within the Custom Platform files

AOCL looks for corresponding executables when respective aocl calls are
made

install (aocl install)
 Installs driver into the host operating system

unstall (aocl install)
 Removes driver from the host operating system

program (aocl program <device> <kernel file>.aocx)
 Programs the FPGA using the provided aocx file

flash (aocl flash <device> <kernel_file>.aocx)
 Programs base programming image into Flash

diagnose (aocl diagnose [<device_name>])
 Confirms board functionality

aoc Output Files

77

<kernel file>.aoco
 Intermediate object file representing the created hardware system

<kernel file>.aocx
 Kernel executable file used to program FPGA

<kernel file> folder
 <kernel file>.log

Main compile log including estimated resource usage, optimization report, and compile messages

 Quartus project

Project files

Source files

Timing reports

quartus_sh_compile.log

 Output from the Quartus software compile

 Useful for error checking

Compiling the Host Program

78

Use a conventional C compiler (Visual Studio/GCC)

Add %ALTERAOCLSDKROOT%/host/include to your file search path
 Recommended to use aocl compile-config

Include CL/opencl.h in your source code

Link to Altera OpenCL libraries
 Link to libraries located in the %ALTERAOCLSDKROOT%/host/<OS>/lib directory

 Recommended to use aocl link-config

Custom Platforms

79

Framework of host software and FPGA interface design to enable the use of

OpenCL on a custom board

Host Software

FPGA Board Hardware

MMD

HAL

Interface OpenCL kernel

DDR / QDR

DMA

IP/XCVR

OpenCL Lib

User OpenCL host

application

User Application Provided by Altera User-Provided custom BSP

80

Custom vs. Preferred Platform

Description Custom Preferred

Flexibility High Low

 Supports Custom Boards Yes No

 Supports Custom Interfaces Yes No

Design skills required Many Fewer

 HDL coding skills required Yes No

 High-speed interface skills required Yes No

 Software coding skills required More Some

Development Time Higher Lower

 Qsys system design effort required Yes No

 Floorplanning effort required Yes No

Custom Platform BSP Overview

81

Goals
 Allow Altera® SDK for OpenCL™ to automatically create FPGA images from OpenCL kernel C code

for custom boards

 Allow the compilation of OpenCL host code to easily run kernels on the FPGA board

Tools
 Custom Platform Toolkit

 Use one of the reference platforms as a starting point

Network Reference Platform

High Performance Computing (HPC) Reference Platform

FPGA design, software, and board bring up skills required

Not required if using an Altera Preferred Board for OpenCL
 Download BSP from the board vendor

Reference Platforms

82

Stratix V Network Reference Platform
 User Guide

 Download from OpenCL board platforms landing page

Stratix V Reference Platform
 Ships with the Altera SDK for OpenCL

Cyclone V SoC Reference Platform
 User Guide

 Ships with the Altera SDK for OpenCL

Template project - Custom BSP toolkit deliverable
 Skeleton design

Arria 10 GX Reference Platform
 Contact your Altera representative for the latest version

http://www.altera.com/literature/hb/opencl-sdk/ug_aocl_s5_net_platform.pdf
http://www.altera.com/products/software/partners/opencl/opencl-board-partner-index.html
http://www.altera.com/literature/hb/opencl-sdk/ug_aocl_c5soc_devkit_platform.pdf

Custom Platform Development Support

83

Custom Platform developer page
 https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-

zone.html#Custom

Custom Platform Toolkit
 https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-

zone.html#Custom

Custom Platform Toolkit User Guide
 https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-

sdk/ug_aocl_custom_platform_toolkit.pdf

https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/ug_aocl_custom_platform_toolkit.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/ug_aocl_custom_platform_toolkit.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/ug_aocl_custom_platform_toolkit.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/ug_aocl_custom_platform_toolkit.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/ug_aocl_custom_platform_toolkit.pdf

Developing a Custom OpenCL BSP

Important New Quartus Software Features1

1. These features apply to Quartus Prime Pro which only supports Arria 10 devices and newer

Partitions and blocks

85

Partitions/blocks and like instances/entities
 Except that most of the time, they’re one-to-one

 In PR, one partition can have multiple blocks

In fact, a partition is always an instance
 The partition name is the instance name

 A partition is simply an instance that cannot be dissolved

A block is the implementation of a partition
 Local assignments

 A netlist

 Placement and routing information

Setting Partitions1

86

Entities

a

root

b c

d e f g h

j i l k

set_instance_assignment –name PARTITION a_block –to a

set_instance_assignment –name PARTITION c_block –to c

set_instance_assignment –name PARTITION bf_block –to b|f

set_instance_assignment –name PARTITION cg_block –to c|g

1. Partitions must be set in the QSF file at this time. Partitions will be supported in the GUI in a future

version of Quartus software.

Partial Reconfiguration (PR)

87

The ability to reconfigure (reprogram) part of the device,

while the rest of the device is running

Used by the OpenCL Runtime to program kernels without

disturbing the periphery

PR for Arria 10 devices is Early Access1 only in 15.1

Persona C

Persona B

Persona A

1. PR for OpenCL as shown is not available for previous devices.

Previous devices used Configuration via Protocol (CvP) for OpenCL.

Commonly Used PR Terms

88

Static region
 Remains constant across all PR personas

 Part(s) of the design not changed by PR

 Essentially the BSP

PR partition
 A design partition targeted for PR

PR region
 A physical location assigned to a PR partition

 Contains the kernels generated by the aoc compiler

Persona
 One of the variations in functionality that a PR region can take

 A PR region may have more than 1 persona

Freeze Wrapper
 discussed later

Developing a Custom OpenCL BSP

Hardware Development

Hardware Procedure - Setup Environment

90

1. Copy the Arria 10 GX Reference Platform

2. Rename the directories of the platform

3. Modify the XML files

4. Modify the environment variables

5. Conduct a base compile using boardtest.cl

6. Verify timing

7. Copy the base_qhd.qar file to the custom BSP directory1

8. Conduct an import compile with a simple kernel

9. Verify error free compile

1. This step is easy to forget.

Modify board_env.xml file1

91

Modify the <your_custom_platform>/board_env.xml file to match the names

of your platform and board directories

<?xml version="1.0"?>

<board_env version="15.1" name=“custom_platform">

 <hardware dir="hardware" default=“my_board"></hardware>

 <platform name="linux64">

 <mmdlib>%b/linux64/lib/libaltera_a10_ref_mmd.so</mmdlib>

 <linkflags>-L%b/linux64/lib</linkflags>

 <linklibs>-laltera_a10_ref_mmd</linklibs>

 <utilbindir>%b/linux64/libexec</utilbindir>

 </platform>

 <platform name="windows64">

 <mmdlib>%b/windows64/bin/altera_a10_ref_mmd.dll</mmdlib>

 <linkflags>/libpath:%b/windows64/lib</linkflags>

 <linklibs>altera_a10_ref_mmd.lib</linklibs>

 <utilbindir>%b/windows64/libexec</utilbindir>

 </platform>

</board_env>

1. The board_env.xml file will be explained in more detail in a later section.

%b references your board installation directory

Modify board_spec.xml file1

92

Modify the <your_custom_platform>/hardware/<board

variant>/board_spec.xml file to match the name of your board directory

<?xml version="1.0"?>

<board version="15.1" name=“my_board">

 <compile project="top" revision="top" qsys_file="system.qsys" generic_kernel="1">

 <generate cmd="echo"/>

 <synthesize cmd="quartus_sh -t import_compile.tcl"/>

 <auto_migrate platform_type="a10_ref" >

 <include fixes=""/>

 <exclude fixes=""/>

 </auto_migrate>

 </compile>

.

.

.

1. The board_spec.xml file will be discussed in more detail in a later section.

Features of the Arria 10 Reference Platform

93

OpenCL Host
 PCIe-based host that connects to the Arria 10 PCIe Gen3 x8 Hard IP core

OpenCL Global Memory
 One 2-gigabyte (GB) DDR4 SDRAM daughter card

FPGA Programming via one of the following methods:
 Partial Reconfiguration (PR) over PCIe

 External cable and the Arria 10 GX FPGA Development Kit's on-board USB-Blaster® II interface

 On-board FLASH

Contents of the Arria 10 Reference Platform

94

\hardware
 Contains the Quartus Prime project templates for three board variants

 Each board variant implements the entire OpenCL hardware system on a given kit

\windows64 /linux64
 Contains the MMD library, kernel mode driver,and executable files of the AOCL utilities (that is,install, uninstall,

flash, program,diagnose) for the OS

\source_windows64
 Contains source codes for the MMD library and AOCL utilities

 The MMD library and the AOCL utilities are in the windows64 folder

/source
 Contains source codes for the MMD library and AOCL utilities

 The MMD library and the AOCL utilities are in the linux64 directory

board_env.xml
 eXtensible Markup Language (XML) file that describes the Reference Platform to the Altera SDK for OpenCL

95

Contents of Each Board Variant Directory

Option Description

quartus.ini Contains any special Quartus Prime software options that you need to compile OpenCL kernels for the Reference Platform.

system.qsys Legacy file that you must update with interfaces, to match those defined in the board spec.xml file, for the compilation flow to

work properly. The compilation process does not include the system.qsys file into the OpenCL hardware system.

board.qsys Qsys system that implements the board interfaces (that is, the static region) of the OpenCL hardware system.

top.qpf Quartus Prime Project File for the OpenCL hardware system.

top.qsf Quartus Prime Settings File for the AOCL-user compilation flow.

top.sdc Synopsys Design Constraints File that contains board-specific timing constraints.

top.v Top-level Verilog Design File for the OpenCL hardware system.

top_post.sdc Qsys and AOCL IP-specific timing constraints.

top_synth.qsf Quartus Prime Settings File for the Quartus Prime revision in which the OpenCL kernel system is synthesized.

base.qsf Quartus Prime Settings File for the base project revision. Use this revision when porting the Arria 10 Reference Platform to your

own custom BSP. The Quartus Prime Pro Edition software compiles this base project revision from source code.

Do not try to compile the BSP project in the Quartus Prime software!

Hardware System Overview

96

Altera SDK for OpenCL-Specific Qsys Components

97

Required
 OpenCL Clock Generator

 OpenCL Kernel Interface

 OpenCL Bank Divider

Altera Interface IP
 PCI Express Hard IP

 DDR Controller

 QDR Controller

Altera Supporting IP
 Avalon-MM Pipeline Bridge

 Scatter Gather DMA

 Uniphy Status Component

 ACL Version ID

 Reset Components

OpenCL Clock Generator

98

Programmable PLL to adjust kernel clock rate

Status interfaces allow software to observe the PLL

kernel_clk_gen clk

reset

ctrl

pll_ref_clk

kernel_clk

kernel_clk2x PLL

PLL ROM

PLL Lock

PLL Reset

PLL Reconfig

kernel_pll_locked

OpenCL Kernel Interface

99

Allows the host to control the kernel compute units

kernel_interface
clk

reset

sw_reset_in

kernel_clk

ctrl

kernel_irq

kernel_cra

sw_reset

kernel_reset

acl_bsp_memorg

kernel_irq_to_host

Sys. Desc.

ROM

SW Reset

Slave

IRQ Sync.

Version

 ID

Mem. Org.

 Slave

Window Bridge

OpenCL Kernel Interface

100

Interface added for each global memory system

Hard IP for PCI Express

101

PCIe Hard IP handles host-to-device communication

Modify the top.sdc file if the refclk frequency changes

See 28nm PCIe online training and PCIe instructor-led training &

device-specific Hard IP for PCIe User Guides

create_clock -period 100MHz [get_ports pcie_refclk]

http://www.altera.com/education/training/courses/OPCI1102
http://www.altera.com/education/training/courses/OPCI1102
http://www.altera.com/education/training/courses/OPCI1102
http://www.altera.com/education/training/courses/OPCI1102
http://www.altera.com/education/training/courses/IPCIE
http://www.altera.com/education/training/courses/IPCIE
http://www.altera.com/education/training/courses/IPCIE
http://www.altera.com/education/training/courses/IPCIE
http://www.altera.com/education/training/courses/IPCIE
http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/lit-ip.jsp
http://www.altera.com/literature/lit-ip.jsp

OpenCL Device

External Memory Buffers

102

A BSP may support different memory device types
 Take advantage of memory device characteristics

External memory information is specified in board_spec.xml (discussed

later)

FPGA Global Memory1

QDR SRAM

In
te

rf
a
c
e

 CU

Global Memory2

DDR3 SDRAM
CU

Latency Density Cost Usage

DDR SDRAM high high low
Ideal for sequential access applications such as

input/output data

QDR SRAM low low high
Better suited for random access applications such as

look-up tables

OpenCL Memory Bank Divider

103

Interface host to kernel memory

Multiple banks support interleaving memory

Provide at least one Memory Bank Divider for each memory type

Number of banks and memory type must be entered into the board_spec.xml file (discussed

later)

memory_bank_divider

acl_bsp_memorg_host

s

bank1

bank2

bankn

acl_bsp_snoop

Snoop

Adapter

Memory

Splitter

clk

reset

kernel_clk

kernel_reset

OpenCL SGDMA Controller

104

Controlled from the Host
 PCIe Tx BAR0 Master

Connect to
 Host PCIe Rx Slave

 All global memories

Through Memory Bank Divider if used

Avalon-ST Interface

105

Used by Altera OpenCL channels or OpenCL 2.0 pipes

Standard, flexible, and modular protocol for transfer of data
 Unidirectional

 Point-to-point connections

 Fully synchronous

 Supports simple and complex interface requirements

Source interface
 Launches data on rising edges of associated clock

Sink interface
 Latches data on rising edges of associated clock

Data format/definition controlled by application or component

Source Sink

See Custom IP Development Using Avalon and AXI Interfaces Online Training

Or consult the Avalon Interface Specifications document

http://www.altera.com/education/training/courses/OQSYS3000
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

106

Avalon-ST Interface Signals

Signal type Width Direction Description

Fundamental signals

ready 1 Sink → Source Indicates the sink can accept data (backpressure control)

valid 1 Source → Sink Qualifies all source to sink signals

data 1-4096 Source → Sink Payload of the information being transmitted

channel 1-128 Source → Sink Channel number for data being transferred (if multiple channels supported)

error 1-256 Source → Sink Bit mask marks errors affecting the data being transferred

Packet transfer signals

startofpacket 1 Source → Sink Marks the beginning of the packet

endofpacket 1 Source → Sink Marks the end of the packet

empty 1-8 Source → Sink
Indicates the number of symbols that are empty during cycles that contain

the end of a packet

Grayed out signals are not supported by OpenCL channels

Simple Streaming Examples

107

Simple example
 data (presents information)

 valid (indicates data is valid)

 Both signals propagate from source to sink

 Sink cannot backpressure or stall transfer if valid is asserted

Another example
 32b inverter block in datapath in Qsys system

 ready used to “throttle” the transfer

Data

source

Data

sink

valid

data

valid

data

ready

ready

data

valid

Sink

interface

Source

interface

Hardware Procedure – Modify the Platform

108

1. Open Quartus software project in the \boardtest\boardtest directory

2. Add or remove components in the board.qsys file

3. Add or remove signals in the system.qsys and top.v files

4. Add or remove SDC constraints in the top.sdc and top_post.sdc files

5. Add or remove LogicLock Plus regions in the base.qsf file

6. Propagate all global assignments from base.qsf to the top.qsf and top_synth.qsf files

7. Copy any files modified above into your custom BSP directory1

8. Conduct a base compile with boardtest.cl using several seeds

9. Verify timing

10. Copy the base_qhd.qar file to your custom BSP directory1

11. Conduct an import compile with a simple kernel

12. Verify error free compile

1. These steps are easy to forget.

Component Editor

109

Used to import components into Qsys system

Launch from Qsys IP Catalog or File menu  New Component

_hw.tcl File

110

Only file generated by Component Editor

Describes all component settings

Portability: _hw.tcl plus HDL code all that is needed to import a component into

other projects

Makes component look and feel like any other component in IP Catalog

Tcl syntax discussed in Advanced Qsys Design Methodologies class

If New Component is an IO Channel

111

Add the channel the

board_spec. xml file

type="streamsink" width="16"

 Directs the compiler to make the “leds_out” interface

a streaming source that is 16 bits wide

name="board" port="leds"

 Directs the compiler to connect the “leds_out”

interface on the kernel.qsys system to the “leds”

interface on the board.qsys system

chan_id="leds_out"

 Directs the compiler to add an exported interface to

the kernel.qsys called “leds_out”.



<interface name="board” port="leds" type="streamsink" width="16“ chan_id="leds_out"/>

system.qsys file

Guaranteed Timing Closure

112

Some interfaces have required

clock frequencies

 PCIe 125 MHz / 250 MHz

 DDR3-1600 800 MHz

 Kernel ??

The custom board developer is responsible for delivering a locked down, timing clean netlist for

the custom platform

PCIe DDR DDR

PLL

reconfig

Post Place & Route Partition

Kernel
Kernel Compute

Engine

Kernel
Kernel Compute

Engine

Developing a Custom OpenCL BSP

Software Development

113

Board XML Files Overview

114

Platforms must include XML files
 Describes your platform to the Altera SDK for OpenCL

board_env.xml
 Describes the properties of your platform

e.g. library location, utility directory

board_spec.xml
 Contains metadata describing your hardware system

e.g. memory properties, device resources used, interfaces, etc

Board Environment XML

115

AOCL_BOARD_PACKAGE_ROOT points to directory where the board_env.xml

is located

Sets up board installation enabling AOC to target specific boards

Template available in the /board_package directory of the Custom Platform

Toolkit

Top level elements
 hardware element

 One platform element for each supported OS

Each platform element contains
 mmdlib, linkflags, linklibs, utilbindir

116

Board Description File – board_env.xml

<?xml version="1.0"?>

<board_env version="15.1" name=“MyPlatformName">

 <hardware dir="hardware" default=“MyBoard"></hardware>

 <platform name="linux64">

 <mmdlib>%b/linux64/lib/libaltera_a10_ref_mmd.so</mmdlib>

 <linkflags>-L%b/linux64/lib</linkflags>

 <linklibs>-laltera_a10_ref_mmd </linklibs>

 <utilbindir>%b/linux64/libexec</utilbindir>

 </platform>

 <platform name="windows64">

 <mmdlib>%b/windows64/bin/altera_a10_ref_mmd.dll</mmdlib>

 <linkflags>/libpath:%b/windows64/lib</linkflags>

 <linklibs>altera_a10_ref_mmd.lib</linklibs>

 <utilbindir>%b/windows64/libexec</utilbindir>

 </platform>

</board_env>

%a references the AOCL installation directory (e.g. c:\altera\15.1\hld)

%b references your BSP installation directory (e.g. c:\altera\15.1\hld\board\MyPlatform)

117

board_env.xml Elements and Attributes

Element Attributes and Descriptions

board_env version: AOCL version used to develop the platform

name: Name of Custom Platform board directory

hardware dir: Subdirectory containing board variants

default: Default board variant

platform name: Name of OS

mmdlib Path to the dynamic MMD libraries of the Custom Platform

linkflags Linker flags necessary to statically link with the MMD layer

linklibs Libraries the AOCL must statically link against

utilbindir Directory where AOCL utility executables are located
(install, uninstall, program, diagnose, and flash)

Testing board_env.xml

118

1. Set AOCL_BOARD_PACKAGE_ROOT to location of the Custom Platform

2. Run aocl board-xml-test

3. Run aoc --list-boards

<?xml version="1.0"?>

<board version="0.9" name=“MyBoard">

 <device device_model="10ax115s2f45i2sges_dm.xml">

 <used_resources>

 <alms num="45000"/>

 <ffs num="117500"/>

 <dsps num="0"/>

 <rams num="583"/>

 </used_resources>

 </device>

 <!-- DDR4-2400 -->

 <global_mem name=”DDR” max_bandwidth=“19200" interleaved_bytes="1024" config_addr="0x18">

 <interface name="board" port="kernel_mem0" type="slave" width="512" maxburst="16”

 address="0x00000000" size="0x80000000" latency="240" addpipe="1" />

 <interface/>

 </global_mem>

 <channels>

 <interface name="udp_0" port="udp0_out" type="streamsource" width="256" chan_id="eth0_in"/>

 <interface name="udp_0" port="udp0_in" type="streamsink" width="256" chan_id="eth0_out"/>

 </channels>

Board Spec XML File (1)

119

Board Spec XML File (2)

120

 <host>

 <kernel_config start=”0x00000000” size="0x0100000"/>

 </host>

 <interfaces>

 <interface name="board" port="kernel_cra" type="master" width="64" misc="0"/>

 <interface name="board" port="kernel_irq" type="irq" width="1"/>

 <interface name="board" port="acl_internal_snoop" type="streamsource" enable="SNOOPENABLE“

 width="33" clock="board.kernel_clk"/>

 <kernel_clk_reset clk="board.kernel_clk“ clk2x="board.kernel_clk2x"reset="board.kernel_reset"/>

 </interfaces>

 <compile project="top" revision="top" qsys_file="system.qsys" generic_kernel="1">

 <generate cmd="echo"/>

 <synthesize cmd="quartus_sh -t import_compile.tcl"/>

 <auto_migrate platform_type=“MyPlatform" >

 <include fixes=""/>

 <exclude fixes=""/>

 </auto_migrate>

 </compile>

</board>

121

board_spec.xml Elements and Attributes

Element Attributes and Descriptions

board version: AOCL version used to develop the platform

name: Name of the current board directory

device device_model: Device model file describing FPGA resources

used_resources: FPGA resource used by the BSP hardware

global_mem name, max_bandwidth, interleaved_bytes, config_addr, interface:

global memory properties

host kernel_config: Address offset where the kernel hardware resides

[channels] interface: Characteristics of each channel interface for direct kernel-to-I/O accesses

interfaces interface, kernel_clk_reset: Description of kernel interfaces connection to and

controlling the kernel hardware

compile project, qsys_files, generate_cmd, etc… : Controls Quartus Prime

compilation

Board XML Files Review

122

board_env.xml
 One needed for each platform

 Describes the properties of your platform

e.g. library location, utility directory

board_spec.xml
 One needed for each board within the platform

 Contains metadata describing your hardware system

Memory properties

Channel properties

Device resources used

Control interfaces

Compile properties

etc.

Memory-Mapped Devices (MMD) Software Layer

123

Software layer for communicating with board
 Over any medium

Used by host programs and board utilities

File I/O like interface needs to be implemented
 Read/write/open/close etc.

To be linked to by the host program
 Statically and dynamically

Board Hardware

Runtime (OpenCL API)

HAL for memory transfers and kernel launches

MMD layer for raw read and write operations

Kernel mode driver for accessing communication medium

MMD API

124

get_offline_info get_info

set_status_handler set_interrupt_handler

open close

read write

copy yield

shared_mem_alloc shared_mem_free

reprogram

AOCL Utilities

125

Custom Platforms must support a set of aocl utilities
 Executables delivered in a subdirectory within the Custom Platform files

AOCL looks for corresponding executables when respective aocl calls are
made

install (aocl install)
 Installs driver into the host operating system

unstall (aocl install)
 Removes driver from the host operating system

program (aocl program <device> <kernel file>.aocx)
 Programs the FPGA using the provided aocx file

flash (aocl flash <device> <kernel_file>.aocx)
 Programs base programming image into Flash

diagnose (aocl diagnose [<device_name>])
 Confirms board functionality

Summary

OpenCL + FPGA Key Benefits

127

Faster development vs. traditional FPGA design flow
 Puts the FPGA in the software developers hands

 Familiar C-based development flow

Heterogeneous IO interface
 Multiple 10G Ethernet

 SDI, HMDI, A/D Interface

Higher performance/watt vs. CPU/GPGPU
 Implement exactly what you need

 Pipeline parallel structures

 Custom interconnect converging with data processing cores

Portability & Obsolescence free
 Code can transfer between different HW accelerators (CPU, GPGPU, FPGA, etc)

 Code ports seamlessly to new generations of the FPGA

 FPGA life cycle considerably longer than CPUs or GPGPUs

Q & A

