
ECOLE D’ELECTRONIQUE IN2P3 2016
20 Juin 2016
Grégory Donzel (XILINX FAE AVNET MEMEC SILICA)

© Copyright 2016 Xilinx
.

XILINX Overview
–A Generation Ahead from 28nm to 16nm
–Tools and Methodology

UFDM Guidelines for easier Timing Closure

Setting Clean Timing Constraints for Predictable Static Timing Analysis
–How to set “Clean” constraints?
–Baselining a Design
–Analyzing through the Design : report_timing_summary, report_clock_interaction, report_cdc…

Last Miles Strategy: Tips and Tricks

What’s next?

Page 2

Agenda

© Copyright 2016 Xilinx
.

XILINX Overview
–A Generation Ahead from 28nm to 16nm
–Tools and Methodology

UFDM Guidelines for easier Timing Closure

Setting Clean Timing Constraints for Predictable Static Timing Analysis
–How to set “Clean” constraints?
–Baselining a Design
–Analyzing through the Design : report_timing_summary, report_clock_interaction, report_cdc…

Last Miles Strategy: Tips and Tricks

What’s next?

Page 3

Agenda

© Copyright 2016 Xilinx
.

Page 4

A Generation Ahead from 28nm to 16nm :
All 20nm UltraScale Devices In Volume Production NOW!

Production rollout of 20nm UltraScale™ FPGAs complete
–All device, package, speed grade options available NOW
–Production speedsfile support in Vivado® 2016.1

High-end uncontested in the market place
Mid-range ~1.5yr ahead of competition
Calls to action
–Leverage our lead at both 20nm and 16nm!!

© Copyright 2016 Xilinx
.

Page 5

A Generation Ahead from 28nm to 16nm:
Market Share

FY11: ~53% FY16: ~57%

Note: All numbers derived from Altera and Xilinx Only
Source: Public Reports and Xilinx Estimates

28nm 20nm 16nm

~65%
~35% Xilinx

~80%
Xilinx

100%
Xilinx

~1 Year Lead
~20%

Competition

Competition

© Copyright 2016 Xilinx
.

Page 6

Tools and Methodology: Tool Offering

Included Features

)
HL WebPack Edition HL Design Edition HL System Edition

Reference / Cost

Free
(Device Limited)

EF-VIVADO-DESIGN-NL
NL $2995

EF-VIVADO-DESIGN-FL
FL $3595

EF-VIVADO-SYSTEM-NL
NL $3495

EF-VIVADO-SYSTEM-FL
FL $4295

Integrated Design Environment   

Software Development Kit (SDK)   

Vivado Simulator   

Vivado Logic Analyzer   

Vivado Serial I/O Analyzer   

Vivado High-Level Synthesis   

System Generator for DSP 

Vivado Analyzer

NL: $995
EF-DSP-PC-NL

FL: $1295
EF-DSP-PC-FL

NL: $995
EF-SDSOC-NL

FL: $1395
EF-SDSOC-FL

Vivado HLS SysGen For DSP SDSoC

© Copyright 2016 Xilinx
.

XILINX Overview
–A Generation Ahead from 28nm to 16nm
–Tools and Methodology

UFDM Guidelines for easier Timing Closure

Setting Clean Timing Constraints for Predictable Static Timing Analysis
–How to set “Clean” constraints?
–Baselining a Design
–Analyzing through the Design : report_timing_summary, report_clock_interaction, report_cdc…

Last Miles Strategy: Tips and Tricks

What’s next?

Page 7

Agenda

© Copyright 2016 Xilinx
.

Page 8

Tools and Methodology: Quick Survey…

Who’s working with ISE?
– Support any FPGA family before 7-Series: The right and only tool to support Spartan-6, Virtex-6, etc…
– Latest supported version: ISE 14.7 (available since October 2013)
– ISE won’t be covered today

Who knows Documentation Navigator?
– Catalog View: Great tool to work with the latest versions of docs
– Design Hub & Checklists
– Can be installed standalone from http://www.xilinx.com/support/documentation-navigation/overview.html
– How to use?

• http://www.xilinx.com/video/support/how-to-use-document-navigator.html

Who knows what UFDM means?
– UFDM = UltraFast Design Methodology

• Vivado Design Suite methodology (UG949) – HDL flow (board to closure)
• Embedded design methodology (UG1046) – Embedded flow (HW + SW)
• High level design methodology (UG1197) – HLx flow (IPI + HLS)

www.xilinx.com/ultrafast

UG949

UG1046

UG1197

http://www.xilinx.com/support/documentation-navigation/overview.html
http://www.xilinx.com/video/support/how-to-use-document-navigator.html

© Copyright 2016 Xilinx
.

Critical Path could be a Moving Target
Example from a Real Design

Page 9

worst path: 4.1ns

worst path: 4.3ns

worst path: 4.2ns

Analyze & Fix timing issues at early stages for
faster timing convergence

Post-synthesis estimates (the real problem)
– Worst path: 13 levels of logic

Post-place
– Worst path: 7 levels
– Paths with 7-13 levels got placed locally

Post-route (the side-effect of the real problem)
– Worst Path: 4 levels of logic
– Paths with 5-13 levels got preferred routing

© Copyright 2016 Xilinx
.

Block inference
– Follow recommended templates for RAM, DSP, LUTRAM, SRL inference

Pipeline your design to reduce levels of logic

Avoid Reset
– No reset at all (if possible) is best: Xilinx devices boot in a known state
– Default register value can be controlled via the INIT property
– Dedicated shifters (SRLs) and RAM memory arrays don’t use resets
– WP272

Synchronous resets are preferred
– Allow packing of registers into dedicated RAM and DSP blocks

• Active HIGH rather than active low reset

– Tools have the option to implement reset in datapath (LUT)

Give more freedom to Synthesis
– Revisit attributes needed by other synthesis engines or older releases
– Avoid KEEP, dont_touch, syn_preserve, max_fanout attributes…

Page 10

Impact of HDL Coding Style

P
A
B

‘1’

rst

 DSP48

Used Register

Unused Register

Asynchronous reset
emulation circuitry

http://www.xilinx.com/support/documentation/white_papers/wp272.pdf

© Copyright 2016 Xilinx
.

Synthesis Templates
– BRAM, LUTRAM, ROM, SRL
– Counter, MULT
– FSM, Decoder, Encoder
– …

Accessing templates in IDE
– Windows  Language Templates
– Available as a standalone window

• Tools  Language Templates
• No project required

Drag and drop into Vivado text editor to use HDL templates

Note sure about HDL Coding Style? Use Language Templates

Page 11

© Copyright 2016 Xilinx
.

Using Language Templates: Coding to Match the Hardware

Leverage DSP block cascading capabilities

Avoid Block RAM collision avoidance logic(*)

Page 12

 DSP48

in

out

in

out DSP48 DSP48 DSP48

Adder tree
becomes a
performance
bottleneck

Pipelined adder chain
delivers optimal performance

rdaddr
wraddr

din

=

dout

RAMB Synthesis
assumes
collision

rdaddr
wraddr
din

dout

RAMB

Inference with
collision check
 disabled

(*): logic added by default by Synplify
(attribute syn_no_rw_check removes the logic)

© Copyright 2016 Xilinx
.

LUT combining leverages the dual-output LUT (O5/O6)
– Pro: saves area
– Con: could induce congestion

Tools behavior
– XST/Synplify combine by default, Vivado Synth has "soft" LC constraints
– Implementation combines LUT based on utilization in place_design
– High device or Pblock utilization will see more combined LUTs

Use report_utilization and look for LUTs with O5 and O6

Guideline: If >15% of LUT use both O5 and O6, then
– Consider turning off LUT combining in synthesis

Page 13

LUT Combining

Slice Logic Distribution
+---+-----------+
|Site Type | Used|
+---+-----------+
Slice	45910
LUT as Logic	120084
using O5 output only	422
using O6 output only	105082
using O5 and O6	14580

© Copyright 2016 Xilinx
.

report_high_fanout_nets
– To reduce fanout on a net use…

• max_fanout (Vivado synthesis and XST)
• syn_maxfan (Synplify)

– Use phys_opt_design for timing driven replication

report_control_sets
– Indicator of possible packing fragmentation and fitting issues
– Run the –verbose option to generate a full list
– Use Synplify’s syn_reduce_controlset_size attribute for control

• Default is 2, set it to 8 to eliminate most lowest fanout control sets

Page 14

Gauging Other Design Metrics

© Copyright 2016 Xilinx
.

“Report Methodology” added to the Flow Navigator
New “Methodology” messages tab
Replaces “Report DRC” methodology rule deck

Ultrafast Methodology Checks

Page 15

© Copyright 2016 Xilinx
.

Vivado does not stop for Critical Warnings
– Enables fixing many issues at once
– Bitstream generation will error with unresolved critical warnings

Critical warnings are serious design issues
– Invalid constraints or XDC syntax errors
– Netlist or target objects not found or invalid

Address these warnings before moving forward
– Results of design analysis may be inaccurate
– Critical Warnings may prevent design success

Page 16

Review and Resolve Critical Warnings

© Copyright 2016 Xilinx
.

UG949
Page 17

In a Word…

© Copyright 2016 Xilinx
.

XILINX Overview
–A Generation Ahead from 28nm to 16nm
–Tools and Methodology

UFDM Guidelines for easier Timing Closure

Setting Clean Timing Constraints for Predictable Static Timing Analysis
–How to set “Clean” constraints?
–Baselining a Design
–Analyzing through the Design : report_timing_summary, report_clock_interaction, report_cdc…

Last Miles Strategy: Tips and Tricks

What’s next?

Page 18

Agenda

© Copyright 2016 Xilinx
.

When constraints (clock, IO) are missing
– The corresponding paths are timed optimistically
– No violation will be reported but design may not work on HW

When path are incorrectly constrained
– Runtime and optimization efforts will be spent on the wrong paths
– Reported timing violations may not result in any issues on HW

When constraints create wrong HOLD violations
– May result in long runtime and SETUP violations
– P&R fixes HOLD violations as #1 priority, because:

• Designs with HOLD violations won’t work on HW
• Designs with SETUP violations will work, but slower

No timing violations
– Setup/recovery (max analysis): WNS > 0ns and TNS = 0ns
– Hold/removal (min analysis): WHS > 0ns and THS = 0ns

Timing Constraints need to be “clean”

Page 19

© Copyright 2016 Xilinx
.

Prioritize and close 1 step at a time

Converge first at Synthesis (faster, higher impact), then in
back-end

Start with the simplest (baseline) constraint:
– Internal Fmax (flop-to-flop constraints) which is the problem 9/10 times
– Define proper clock dependencies

Make sure the design & constraints are reasonable

Analyze, get to root cause, then decide how to fix it
– Clock path vs. data path vs. interconnect delay vs. logic delay…
– Add I/O constraints (with Vivado XDC templates) and redo…

“Clean” Constraints for Rapid Timing Closure

Page 20

© Copyright 2016 Xilinx
.

Create Constraints: Four Key Steps

1. Create clocks
2. Define clocks interactions
3. Set input and output delays
4. Set timing exceptions

Use the Timing Constraints Wizard

Validate Constraints at each step
• Monitor unconstrained objects
• Validate timing

Page 21

report_timing

report_timing_summary

check_timing

report_clocks (Note: Tcl only)

report_clock_networks

report_clock_interaction Note: Available via GUI and Tcl

Method to Create Good “Clean” Constraints

© Copyright 2016 Xilinx
.

In a Drawing: Progressive Approach to Design Closure

Synthesis
• Analysis

Place
• Analysis

Route
• Analysis

Baseline Constraints

Optimize Internal Paths

Fmax

Baseline XDC

Synthesis
• Analysis

Place
• Analysis

Route
• Analysis

Add I/O Constraints

Optimize Entire Chip

Fmax

Complete XDC

Synthesis
• Analysis

Place
• Analysis

Route
• Analysis

If needed
Add Timing Exceptions

and/or Floorplan

Fine-tune

Fmax

Final XDC

Page 22

© Copyright 2016 Xilinx
.

Starting from a fully Synthesized Netlist

2 Baseline Stages:

1. Constraint Development

1.1. Add IP constraints
1.2. Create clocks
 1.2.1. Use create_clock
 1.2.2. Run report_clocks
1.3. Define clocks interactions

2. Implementation with report_timing_summary

Page 23

Baselining Designs With VIVADO

© Copyright 2016 Xilinx
.

Do Not Forget To Include IP Timing Constraints
– Many cores have their own timing constraints that include important exceptions (PCIE, MIG, 2-clock distributed

FIFOs…)
– Non-native IP: very easy to drop the IP constraints especially if customer only provides IP as .ngc netlist files
– Native IP: use report_compile_order –constraints to identify all constraint file sources

Page 24

Baseline Stage 1: Constraint Development
Add IP Timing Constraints

© Copyright 2016 Xilinx
.

Do Not Forget To Include IP Timing Constraints
– Native IP: review BOTH xdc file that comes with core AND example project xdc for timing exceptions

Page 25

Baseline Stage 1: Constraint Development
Add IP Timing Constraints

© Copyright 2016 Xilinx
.

Clock Ground Rules…
For SDC-based timers, clocks only exist if you create them
– Use create_clock for primary clocks

Clocks propagate automatically through clocking modules
– MMCM and PLL output clocks are automatically generated
– Gigabit transceivers are not supported. Create them manually.

Use create_generated_clock for internal clocks (if needed)
All inter-clock paths are evaluated by default

Page 26

Baseline Stage 1: Constraint Development
Creating Clocks

don’t
create_clock here

create_clock
here

© Copyright 2016 Xilinx
.

Define primary clocks: create_clocks
– Create at top level port or GT OUTCLK pins
– Run the design (synthesis) or open netlist design

Verify specified and automatically generated clocks: report_clocks

– To check constraint quality or to identify constraint issues: check_timing

Define remaining internal clocks: create_generated_clocks
– Find unconstrained generated clocks in Check Timing and Report Clock Networks reports

Page 27

Baseline Stage 1: Constraint Development
Creating Clocks

Attributes
 P: Propagated
 G: Generated

Clock Period Waveform Attributes Sources
sys_clk 10.000 {0.000 5.000} P {sys_clk}
pll0/clkout0 2.500 {0.000 1.250} P,G {pll0/plle2_adv_inst/CLKOUT0}
pll0/clkout1 10.000 {0.000 5.000} P,G {pll0/plle2_adv_inst/CLKOUT1}

Timing Constraint Wizard!

© Copyright 2016 Xilinx
.

Review and monitor unconstrained objects
– To Check Progress:

report_clocks
report_clock_networks
check_timing
report_timing_summary: Check Timing section

Avoid Clock Skew
– Verify clock network topology

report_clock_networks
Beware of:
−Gated clocks
−Unconstrained clocks
−Related clock from different MMCM

Page 28

Baseline Stage 1: Constraint Development
Creating Clocks: Clock Constraint Validation Helpers

© Copyright 2016 Xilinx
.

1
-
3
3

Report Clock Interaction after Creating Clocks in
Baseline Stage 1

Run report_clock_interaction

© Copyright 2016 Xilinx
.

Clock Interaction Ground Rule…
All inter-clock paths are evaluated by default

P 30

CLK1

CLK2

CDC
CLK1 & CLK2
 UCF: asynchronous SDC: synchronous

CDC
 UCF: ignored SDC: Timed

Use set_clock_groups to
• make CLK1 & CLK2 asynchronous
• ignore CDC

primary clocks
create_clock -name clk_oxo –period 10.00 [get_ports
clk_oxo]
create_clock -name clk_core –period 3.33 [get_ports
clk_core]

set Asynchronous Clock Groups
 set_clock_groups –asynchronous \
 -group [… –include_generated_clocks clk_oxo] \
 -group [… –include_generated_clocks clk_core]

Baseline Stage 1: Constraint Development
Clock Interaction

© Copyright 2016 Xilinx
.

Evaluate the clock interaction

– Use report_clock_interaction
BEWARE: All inter-clock paths are

constrained by default!

– Mark inter-clock paths (Clock Domain
Crossing) as asynchronous
• Make sure you designed proper CDC synchronizers
• Use set_clock_groups (preferred method to

set_false_path)
 BEWARE: This overrides any set_max_delay
constraints!

– Do you have unconstrained objects?
• Find out with check_timing

Page 31

Baseline Stage 1: Constraint Development
Clock Interaction

© Copyright 2016 Xilinx
.

set_property ASYNC_REG TRUE \
[get_cells [list sync0_reg sync1_reg]]

Run Report Clock Domain Crossings
– If two clocks are not related, but paths exist between them, then

there must be a clock crossing circuit between them.
– report_cdc
– Check CDC Topologies

Use appropriate synchronizing techniques
– Asynchronous signals always cause some possibility that the system

would fail.
– 2 or more register stages, for single bit
– FIFO for buses

Reducing Impact of Metastability and Maximize MTBF
– ASYNC_REG to place synchronizing flops in the same slice for best

Mean Time Between Failures (MTBF)
– Usually comes with set_max_delay constraint

Page 32

Baseline Stage 1: Constraint Development
Clock Interaction: Constraining Cross Clock Domains

© Copyright 2016 Xilinx
.

Ignoring timing paths between individual clocks
set_clock_groups –asynchronous –group {clk1} –group {clk2}

This is equivalent to:
set_false_path –from [get_clocks clk1] –to [get_clocks clk2]
set_false_path –from [get_clocks clk2] –to [get_clocks clk1]
 BEWARE: This overrides any set_max_delay constraints!

Ignoring timing paths between groups of clocks
SDC create_clock for the two primary clocks
create_clock -name clk_oxo -period 10 [get_ports clk_oxo]
create_clock -name clk_core -period 10 [get_ports clk_core]

Set Asynchronous Clock Groups
set_clock_groups -asynchronous
-group [get_clocks –include_generated_clocks clk_oxo] \
-group [get_clocks –include_generated_clocks clk_core}]
 BEWARE: This overrides any set_max_delay constraints!

Page 33

Baseline Stage 1: Constraint Development
Clock Interaction: Constraining for Asynchronous CDC – Single Bit

© Copyright 2016 Xilinx
.

Use built-in hard FIFO (preferred)
– Circuit is designed for async transfers
– Use set_clock_groups constraint

Use fabric Gray coded FIFO transfer
– Set timing requirement:

set_max_delay $delay \
 –from [get_pins cell1/C] \
 –to [get_pins cell2/D] \
 –datapath_only
(with $delay < clk A period or
smaller of the two clock periods)

– XDC file with set_max_delay constraint auto-generated by the IP
Catalog

– Do not create async clock groups
 set_clock_groups has higher precedence and would override set_max_delay

sync.

sync.

cell1

cell2
Notes:
– datapath_only is Xilinx specific (not SDC compliant)

Page 34

Baseline Stage 1: Constraint Development
Clock Interaction: Constraining for Asynchronous CDC – Bus

© Copyright 2016 Xilinx
.

Run report_clock_networks to ensure that the data path between the
clock domains are analysed properly
– You want the design to have clean clock lines without logic

• Tip: Use clock gating option in synthesis to remove LUTs on the clock line

report_clock_network shows unconstrained networks

Page 35

Baseline Stage 1: Constraint Development
Clock Interaction: Final Step

Report clock network
has unconstrained

clocks

Report clock network
has no unconstrained

clocks create_clock

© Copyright 2016 Xilinx
.

1
-
3
6

Report Clock Interaction after setting set_clock_groups constraints in
Baseline Stage 1

Run report_clock_interaction

© Copyright 2016 Xilinx
.

Run report_timing_summary after each step (not optional)
Ensure WNS < 300 ps
If TNS is better than -30ns, you can actually proceed to the next step
even if the WNS is worse than -300ps

Page 37

Baseline Stage 2: Implementation with report_timing_summary
WNS < 300ps as a rule of thumb…

© Copyright 2016 Xilinx
.

GUI

Page 38

opt_post_timing.tcl file:
report_timing_summary -file opt_timing.rpt

Build.tcl file:

link_design -name top -part xc7vx1140tflg1928-2
read_xdc top.xdc

opt_design

report_timing_summary -file opt_timing.rpt
write_checkpoint -force opt.dcp

place_design

report_timing_summary -file place_timing.rpt
write_checkpoint -force place.dcp

phys_opt_design

report_timing_summary -file popt_timing.rpt
write_checkpoint -force popt.dcp

route_design

report_timing_summary –file routed_timing.rpt
write_checkpoint –force routed.dcp

Baseline Stage 2: Implementation with report_timing_summary
Setting up with report_timing_summary

Batch

© Copyright 2016 Xilinx
.

1
-
3
6

Report Clock Interaction after Baseline Stage 2

Page 36

© Copyright 2016 Xilinx
.

Specify Realistic I/O delays: set_input_delay, set_output_delay
– Wrong delay value (e.g., <0 ns) can cause invalid analysis

Input/Output Delay constraint helpers
– Use the XDC template for constraining input and output interfaces

Check Progress: check_timing, report_timing_summary, report_timing

Setting Input / Output Delays

Page 40

© Copyright 2016 Xilinx
.

set_input_delay -clock [get_clocks {Clk}] -min -add_delay 1.21 [get_ports {Din[*]}]
set_input_delay -clock [get_clocks {Clk}] -max -add_delay 2.25 [get_ports {Din[*]}]

Data

period

tco_min +trce_dly_min

tco_max +trce_dly_max

Transmit Edge

Capture Edge

(10ns)

(1.21ns)

(2.25ns)

(Hold Check)
Capture Edge

(Setup Check)

FPGA FPGA

Din

D

C

D

CClk

trce_dlytco
tsu/th

FPGASource Device

IBUF BUFG

IBUF

(0.21 to 0.25ns)(1 to 2ns)

Din

Timing Constraint Wizard!

Constraining Inputs

Referenced to clock input
– Max for setup analysis
– Min for hold analysis

Page 38

© Copyright 2016 Xilinx
.

set_output_delay -clock [get_clocks {Clk}] -min -add_delay -0.59 [get_ports {Dout[*]}]
set_output_delay -clock [get_clocks {Clk}] -max -add_delay 2.25 [get_ports {Dout[*]}]

D

CClk

trce_dly

Receiving Device

tsu/th
D

C

tsu/th

IBUF BUFG

FPGA
(0.21 to 0.25ns) (2/0.8ns)Dout

Data

period
(10ns)

(2.25ns)

(1.01ns)

Capture Edge
(Hold Check)

Capture Edge
(Setup Check)

tsu +trce_dly_max
th +trce_dly_min

Transmit Edge
FPGA

Dout

tco (min) >= 0.59ns
0.59ns + 0.210ns = 0.8ns

Constraining Outputs

Referenced to clock input
– Max for setup analysis
– Min for hold analysis

Timing Constraint Wizard!

Page 39

© Copyright 2016 Xilinx
.

Setting Setting Input / Output Delays can be tricky

Accessing templates in IDE
– Windows  Language Templates

SDR & DDR Templates
– Inputs and outputs
– Source / System synchronous
– Center / Edge aligned

Using Vivado Language Templates
XDC Template

Page 43

© Copyright 2016 Xilinx
.

Synthesize and Implement after setting Input / Output Delays

Page 44

79303**slide

Re-synthesize and implement the design to enable the I/O constraints to alter the
synthesis and implementation results found from Baseline Stage 2
— Note that if your additional timing constraints meet timing after reloading the netlist, you may not need to

re-synthesize and re-implement

Analyze the design's performance against the performance baseline, you may find
some intra-clock paths now fail

1
- 3

8

© Copyright 2016 Xilinx
.

Goal – to help timing closure
– Adjust unrealistic timing requirements
– Avoid higher implementation runtimes
– Be aware of Exception Priority

Exceptions can HURT timing closure
Exception Validation: report_exceptions, report_drc -ruledeck
timing_checks/methodology_checks

Page 45

Timing Exceptions: Less is More!

set_multicycle_path – beware about –hold (avoid wrong hold violations)

regexp – check you only cover the expected paths

set_false_path –from – No runtime impact

set_false_path -from … -to … – Impact. (due to shared paths)

set_multicycle_path 3 –from REGA/Q

set_multicycle_path 2 –to REGB/D

set_false_path
set_multicycle_path
set_max_delay

Syntax
related

Runtime

Conflicts
resolution

-from wins: it has higher
 priority vs. -to

© Copyright 2016 Xilinx
.

set_multicycle_path N implies a HOLD check at N-1
– E.g.: a multicycle_path of 10 implies a HOLD requirement of 9 cycles!

Whenever setup check is changed, hold check is also changed
Guidelines to avoid hurting runtime and SETUP
– Add proper circuitry (e.g. clock enable logic)
– Bring the HOLD requirement back to 0 (reduce by N-1) to avoid incorrect HOLD violations
– Example: Same clock for both startpoint and endpoint, with a clock enable active every 3 cycles

Page 46

BEFORE: set_multicycle_path –from [get_cells regB] –to [get_cells regC] 3  setup:3, hold:2


AFTER: set_multicycle_path –from [get_cells regB] –to [get_cells regC] 3 -setup
 set_multicycle_path –from [get_cells regB] –to [get_cells regC] 2 –hold  setup:3, hold:1

Multicycle Paths

Enabled Flops with Same Clock Signal

© Copyright 2016 Xilinx
.

XDC Timing File with Timing Exceptions

1
-
3

9

78515**slide

First, remove the set_clock_groups -asynchronous constraint
— This is not necessary any more since you want to now properly constraint your

design's inter-clock paths

Apply timing exceptions to the design (for example)

clkx_nsamp_i0/meta_harden_bus_new_i0/signal_meta_reg] -to \ [get_cells
clkx_nsamp_i0/meta_harden_bus_new_i0/signal_dst_reg]\ 2
set_max_delay -from [get_cells \
clkx_pre_i0/meta_harden_bus_new_i0/signal_meta_reg] -to \ [get_cells
clkx_pre_i0/meta_harden_bus_new_i0/signal_dst_reg] 2

set_multicycle_path -from [get_cells \
{cmd_parse_i0/send_resp_data_reg[*]}] -to \
[get_cells {resp_gen_i0/to_bcd_i0/bcd_out_reg[*]}] 2
set_multicycle_path -hold -from [get_cells \
{cmd_parse_i0/send_resp_data_reg[*]}] -to \
[get_cells {resp_gen_i0/to_bcd_i0/bcd_out_reg[*]}] 1
set_false_path -from [get_ports rst_pin]
set_max_delay 5 -from $rx_clk -to $tx_clk
set_max_delay -from [get_cells \

Page 43

© Copyright 2016 Xilinx
.

Page 44

79304**slide

Re-synthesize and implement the design to enable the path-specific constraints to
alter the synthesis and implementation results found after setting input/output
constraints

— Note that if your additional timing constraints meet timing after reloading the netlist, you may not
need to re-synthesize and re-implement
• This is especially true if you are only adding multi-cycle and false path constraints

1
- 4

0

Synthesize and Implement after setting Timing Exceptions

© Copyright 2016 Xilinx
.

1
-
3

6

Report Clock Interaction after adding Timing Exceptions
78882**slide

This is the final Clock Interaction report generated after it has been completely and
properly constrained
— From this you can see that some of the paths between clocks do not have any paths-specific constraints

(and logically no synchronization circuits)
• This utility does not anticipate your design's needs; it only tries to help you evaluate your design

Page 45

© Copyright 2016 Xilinx
.

report_timing_summary – a complete view on the Design Timing
– Store results from various commands: check_timing, report_timing, …

report_timing – interactive STA
– Enables to focus on a specific design part

• One clock domain
• All paths between two registers
• All paths going though a specific net

Timing Analysis, Reading Reports

Page 50

Use them for constraints tuning at each constraints definition step

© Copyright 2016 Xilinx
.

Understanding Timing Reports - Summary

Path Name
Slack
Source
Destination
Path Type
Requirement
Data Path Delay
Logic Levels
Clock Path Skew
Clock Uncertainty
 D

CCLKIN1 CLKOUT0

CLKFBOUTCLKFBIN

tco (0.456ns)

Clk
clk_int (s)

D

C

tsu (0.433ns)

clk_int (d)

Page 48

© Copyright 2016 Xilinx
.

Understanding Timing Reports – Source Clock

Delay from the Clk input to source Clock input

Clk

clk_int (s)

-1.339ns

10ns

Page 49

© Copyright 2016 Xilinx
.

Understanding Timing Reports – Destination Clock

Delay from the Clk input to destination Clock input

Clk

clk_int (d)
-1.379ns

10ns

(10-8.621)

Page 50

© Copyright 2016 Xilinx
.

Understanding Timing Reports – Data Path

Delay from source FF to destination FF input

Clk

clk_int (s)

-1.339ns

2.92ns

Page 51

© Copyright 2016 Xilinx
.

Understanding Timing Reports - Slack

Clock path skew is the difference
between source and destination clocks

Clock uncertainty reduces slack

Arrival time is data path delay with
respect to the Clk input

Required time is the requirement - clock
delay, setup time and clock uncertainty

Slack is required time - arrival time

Clk

clk_int (s)

-1.339ns

-0.433ns

clk_int (d)
-1.379ns
(10-8.621)

2.92ns Data Path

-0.04ns setup_time
skew

6.533ns Slack

1.581ns Arrival time

10-1.379-0.433-0.074 (8.114ns) Required Time

Required Time-Arrival Time

10ns

Page 52

© Copyright 2016 Xilinx
.

XILINX Overview
–A Generation Ahead from 28nm to 16nm
–Tools and Methodology

UFDM Guidelines for easier Timing Closure

Setting Clean Timing Constraints for Predictable Static Timing Analysis
–How to set “Clean” constraints?
–Baselining a Design
–Analyzing through the Design : report_timing_summary, report_clock_interaction, report_cdc…

Last Miles Strategy: Tips and Tricks

What’s next?

Page 56

Agenda

© Copyright 2016 Xilinx
.

Page 57

Timing Results Post Place Design

Assuming clean timing before place design.

Typical causes of large timing violations:
– High fanout nets

– Bad floorplan and/or bad IO placement

– Over utilization

– SLR crossings on SSI devices

Can go to phys-opt even if timing is not clean
– Reasons for bad WNS can be fixed by phys_opt

Synth
Timing
Clean

Place
Timing
Clean

Phys Opt
Timing
Clean

Route
Timing
Clean

© Copyright 2016 Xilinx
.

Page 58

Timing Results Post Phys Opt Design

Assuming timing clean before phys-opt

Typical causes of large timing violations:
– Phys-opt only works on top offenders

• Try looping with various options

– High fanout nets driven from LUTs

– DONT_TOUCH attribute preventing optimizations

– Replace

– Retime push FFs in/out of BRAMs/SRLs

Once timing is clean WNS better than -300ps
– Go to route_design

Synth
Timing
Clean

Place
Timing
Clean

Phys Opt
Timing
Clean

Route
Timing
Clean

© Copyright 2016 Xilinx
.

Page 59

Timing Results Post Route Design

Assuming timing clean timing before route

Typical causes of large timing violations:
– Hold fixing -> run route_design with:

• set_false_path –hold –from [all_registers]

• Report timing actual vs estimated

– Congestion

Tips
– Overconstrain

– Incremental placement

– OOC for sub blocks

Synth
Timing
Clean

Place
Timing
Clean

Phys Opt
Timing
Clean

Route
Timing
Clean

© Copyright 2016 Xilinx
.

Overconstraining works well in some cases
– When placer under-estimates routing delays

Correlation between routing estimates and actual routing are getting
tighter in newer Vivado releases
– Post route: report timing with estimates and compare to actual

What is a good candidate for overconstraining?
– Positive slack in placer, but fails by ~200-300ps in router
– Small negative slack in placer and router, i.e. ~200-300ps

What to overconstrain?
– Placer and phys-opt
– Placer, phys_opt and router

Page 60

Overconstraining

© Copyright 2016 Xilinx
.

XILINX Overview
–A Generation Ahead from 28nm to 16nm
–Tools and Methodology

UFDM Guidelines for easier Timing Closure

Setting Clean Timing Constraints for Predictable Static Timing Analysis
–How to set “Clean” constraints?
–Baselining a Design
–Analyzing through the Design : report_timing_summary, report_clock_interaction, report_cdc…

Last Miles Strategy: Tips and Tricks

What’s next?

Page 61

Agenda

© Copyright 2016 Xilinx
.

Documentation Navigator: Design Hub
View
– Applying Design Constraints
– Timing Closure & Design Analysis

MVD Training (Ludovic Aubel)
– ludovic.aubel@mvd-fpga.com
– Mobile: +33 (0)6 06 45 13 64

Page 62

What’s Next?

http://www.mvd-training.fr/en/formation/fpga_vhdl/fpga/vivado/Vivado_Design_Suite_Static_Timing_Analysis_and_Xilinx_Design_Constraints.php
mailto:ludovic.aubel@mvd-fpga.com

© Copyright 2016 Xilinx
.

UFDM  UG949
–Use HDL Coding Guidelines
–Avoid Reset whenever possible: Reset at startup by default!

Use the Timing Constraints Wizard
–Timing Constraints Editor available too

Baseline the design first!
–report_clock_interaction  Clocks are related by default in XDC (unlike UCF)
–Start evaluate Constraints Post-Synthesis before running Implementation

Timing Exceptions: Less is more!

report_timing_summary – a complete view on the Design Timing

Page 63

Summary

© Copyright 2016 Xilinx
.

Page 64

Thank You!

© Copyright 2016 Xilinx
.

Revenue Breakdown – March 2016

Communications
 &

Data Center
43% Industrial &

A&D
40% Broadcast,

Consumer &
Auto

17%

North
America

32%

Asia
Pacific
38%

Japan
9% Europe

21%

Mainstream
23%

New
49%

Base
24%

Revenue by End Market Revenue by Geography Revenue by Category

Page 65

© Copyright 2016 Xilinx
.

Lab 1: Open and Run synthesis on a project
and Review timing summary
– Open Lab Project

• Run Synthesis and Open Synthesized Design

– Run report_timing_summary
• Gauge timing after synthesis

Lab 2: Post-Synthesis design analysis for
identifying constraint issues (clocks)
– Run report_clock_networks

• Identify Missing Clocks

– Create the missing clocks by using the XDC template
• Examine if all clocks constrained correctly

– Run report_clocks in the TCL console
• Open the ASCII report file to view the clocks in the design

Page 14

Labs 1 - 2

© Copyright 2016 Xilinx
.

Q. How do I know when I am done constraining clocks?
– A. When report_clock_networks shows no unconstrained networks

Page 67

Using report_clock_networks

© Copyright 2016 Xilinx
.

Q. How do I make sure my clocks are correct?
– A. When report_clocks shows period, waveform, and attribute for every clock in the

design

Page 68

Using report_clocks

© Copyright 2016 Xilinx
.

Lab 3: Running check_timing and report_clock_interaction
– Run check_timing and review results

• What issues did you find in this design?
• Review other areas where check_timing might be useful in your design

– Running report_clock_interaction
• Analyze the report
• Identify the column where clock relationships are identified
• Identify if the path requirements for Setup and Hold

Lab 4: Constraining IOs
– Run check_timing in the TCL console

• How many inputs are unconstrained
• How many outputs are unconstrained
• Use the XDC template to constrain the unconstrained IO ports

Page 17

Labs 3-4

© Copyright 2016 Xilinx
.

Q. How do I know what clocks should be related?
– A. report_clock_interactions – sort by Common Primary Clock

Page 70

Clock Interactions

© Copyright 2016 Xilinx
.

Q. How do I know if I have unrealistic path requirements?
– A. report_clock_interactions – sort by Path Req (WNS)

Page 71

Clock Interactions

© Copyright 2016 Xilinx
.

Lab 5: Cross-Probing features in Vivado
– Schematics, RTL, Device Floorplan, etc.
– Run report_timing_summary

Lab 6: Last Mile of timing closure
– Is timing closure achieved?
– Review timing results

• Is the design fully constrained?
• Are the timing constraints too pessimistic?

– Run report_drc
– Review all Critical Warning

Page 20

Lab 5-6

© Copyright 2016 Xilinx
.

What is the short-cut key for opening the schematic?
– A. F4

Page 21

Cross-Probing

© Copyright 2012 Xilinx

© Copyright 2016 Xilinx
.

78889**slide

This is our most detailed
description of

performance baselining

Performance Baselining

1
-
2
9

© Copyright 2016 Xilinx
.

Summary

Follow Xilinx on:

facebook.com/XilinxInc twitter.com/#!/XilinxInc youtube.com/XilinxInc

Fully integrated design suite increases efficiency
Creating and Validating Timing constraints are easy
– Use XDC template for help in creating constraints
– Use the Vivado Design Software’s report commands to debug and fine

tune constraints

Send any feedback to balacha@xilinx.com

http://www.facebook.com/XilinxInc
http://twitter.com/
http://www.youtube.com/XilinxInc

© Copyright 2016 Xilinx
.

Page 76

Timing Results Post Place Design

Assuming clean timing before place design.

Typical causes of large timing violations:
– High fanout nets

– Bad floorplan and/or bad IO placement

– Over utilization

– SLR crossings on SSI devices

Can go to phys-opt even if timing is not clean
– IFF reasons for bad WNS can be fixed by phys_opt

– IFF there are not too many issues

Synth
Timing
Clean

Place
Timing
Clean

Phys Opt
Timing
Clean

Route
Timing
Clean

© Copyright 2016 Xilinx
.

Page 77

Timing Results Post Phys Opt Design

Assuming timing clean before phys-opt

Typical causes of large timing violations:
– Phys-opt only works on top offenders

• Try looping with various options

– High fanout nets driven from LUTs

– DONT_TOUCH attribute preventing optimizations

– Replace

– Retime push FFs in/out of BRAMs/SRLs

Once timing is clean WNS better than -300ps
– Go to route_design

Synth
Timing
Clean

Place
Timing
Clean

Phys Opt
Timing
Clean

Route
Timing
Clean

© Copyright 2016 Xilinx
.

Page 78

Timing Results Post Route Design

Assuming timing clean timing before route

Typical causes of large timing violations:
– Hold fixing -> run route_design with:

• set_false_path –hold –from [all_registers]

• Report timing actual vs estimated

– Congestion

Tips
– Overconstrain

– Incremental placement

– OOC for sub blocks

Synth
Timing
Clean

Place
Timing
Clean

Phys Opt
Timing
Clean

Route
Timing
Clean

© Copyright 2016 Xilinx
.

Recommended to drive high
fanout nets from a
synchronous start point
Identify high fanout nets
driven by LUTs
report_high_fanout_nets –
load_types –max_nets 100
– 2012.4 requires placed design
– 2013.1 hope to be able to do this before

placement

Page 79

High Fanout Nets Driven by LUTs

© Copyright 2016 Xilinx
.

Upon identifying a group of high fanout nets driven
by LUTs, use report_timing –through to evaluate
timing

Page 80

High Fanout Nets Driven by LUTs

© Copyright 2016 Xilinx
.

Identifying long logic paths is useful to diagnose
where difficult QoR challenges exist
Identifying longest logic paths measured by logic
levels is helpful, but doesn’t always tell the full
story
Identifying longest paths measured by logic delay
without routing

set_delay_model -interconnect none
report_timing_summary -max_paths 10

Page 81

Long Logic Paths

© Copyright 2016 Xilinx
.

Negative slack in timing report
with no routing means timing
closure not achievable
Of larger importance is the
nature of the timing paths in
each clock domain
Most frequent offenders
– Paths sourced by unregistered BRAMs
– Paths sourced by SRL
– Paths containing unregistered, cascaded DSP

blocks
– Paths with large number of logic levels

Page 82

Long Logic Paths

© Copyright 2016 Xilinx
.

Many Xilinx customers do not pay close attention to jitter when setting up their clocks
Unintended consequence is that they are leaving timing margin on the table in the form
of higher than necessary clock uncertainty
Clock uncertainty = ((TSJ^2 + DJ^2)^1/2)/2 + PE

Page 83

The Best Kept Secret To Acquire (almost) Free Timing Margin

© Copyright 2016 Xilinx
.

Observation: Running VCO as fast as possible often reduces
calculated clock uncertainty in order to buy small amount of
margin across thousands of paths at the expense of slightly higher
power
Recommendataion: Try different options with clock wizard to
emulate customer MMCM/PLL configuration to identify best
peak-to-peak jitter performance

Page 84

The Best Kept Secret To Acquire (almost) Free Timing Margin

© Copyright 2016 Xilinx
.

Two real examples & demo

Page 85

The Best Kept Secret To Acquire (almost) Free Timing Margin

MMCM/PLL Jitter Opt VCO (MHz) Clkout3
Pk-to-pk
jitter (ps)

Uncertainty
based on 71
ps system
jitter (ps)

MMCM Balanced 1000 356 182
MMCM Min Out Jitter 1250 226 118
PLL Min Out Jitter 1500 178 95

MMCM/PLL Jitter Opt VCO (MHz) Clkout3
Pk-to-pk
jitter (ps)

Uncertainty
based on 71
ps system
jitter (ps)

MMCM Balanced 1000 113 67
MMCM Min Out Jitter 1400 90 57
PLL Min Out Jitter 1800 72 51

Saved 16 ps
per path over
thousands of

paths!!

Saved 87 ps
per path on

thousands of
paths!!

© Copyright 2016 Xilinx
.

Input clock
– 100 MHz

Output clocks
– 85 MHz
– 340 MHz

Jitter
– 85 MHz (242 ps)
– 340 MHz (200 ps)

Page 86

Demo

© Copyright 2016 Xilinx
.

Change Jitter Opt
– Minimize Output Jitter

Swap output clocks
– Faster clock on clk_out1

(CLKOUT0 of MMCM) allows for
use of fractional divider which
results in higher VCO

Jitter
– 85 MHz (113 ps)
– 340 MHz (88 ps)

Page 87

Demo

© Copyright 2016 Xilinx
.

Change Primitive
– Use PLL

Same output clocks

Jitter
– 85 MHz (87 ps)
– 340 MHz (69 ps)

Page 88

Demo

© Copyright 2016 Xilinx
.

Agenda

New Tricks with the IDE

The Best Kept Secret to (almost) Free Timing Margin

Sweeping Vivado Directives with Tcl

Page 89

© Copyright 2016 Xilinx
.

SmartXplorer
– Ability to run multiple implementation runs with

different tool options on a number of different
hosts

Cost Tables
– Ability to slightly perturb initial random

placement to “hopefully” produce a different
“slightly better” timing result

ISE Tools That Were Tough To Let Go

© Copyright 2016 Xilinx
.

Vivado Tool For Running Multiple Builds

Directive: for non-project mode
– “directs” the behavior of a command

to choose a set of algorithms
– Building blocks for strategies

Uses different algorithms
– Not random seeds like ISE cost

tables
– More consistent behavior

But…….many people still ask for
Smartxplorer & Seeds

© Copyright 2016 Xilinx
.

Goal: choose the optimal directive for each implementation step
“Directive Sweeping”
– Tcl script opens command shells, creates directories and launches tool for each implementation step
– Each implementation step uses a unique implementation directive, while keeping the rest of the

design constant.

After each implementation step, compare timing results of the
attempts and choose the best candidate(s) to carry forward to
next implementation step
– Look for results that are head-and-shoulders above the rest

Directive Sweeping with Vivado

© Copyright 2016 Xilinx
.

Baseline the design first to ensure
timing constraints are reasonable
Baseline the design first to ensure
timing constraints are reasonable
(Yes – this is here on purpose)
Start point is a linked design or
optimized design checkpoint with
full timing constraints and no
floorplan
For effective time use, launch all
attempts for each implementation
step in parallel
– Requires heavy compute resources

Directive Sweeping with Vivado
Baseline Notes on “XYZ Design”

1. Open synthesized design. Run report_timing_summary –delay_type min_max and fill out table below.

 WNS TNS Number of

Failing
Endpoints

WHS THS Number of
Failing
Endpoints

Synth

2. Open the post-synthesis report_timing_summary text report and copy the no_clock section of check_timing
below.

Number of missing clock requirements in my design: ___________

3. Run report_clock_networks.

Number of unconstrained clocks in my design: ________

4. Run report_clock_interaction –delay_type min_max. Sort results by WNS path requirement.

Smallest WNS path requirement in my design: ___________

5. Sort results of report_clock_interaction by WHS to see if there are large hold violations (> 500 ps) after
synthesis.

Largest negative WHS in my design: ______________

6. Sort results of report_clock_interaction by Inter-Clock Constraints and list ALL clock pairs that show up as

unsafe below:

7. Upon opening the synthesized design, how many CRITITCAL_WARNINGS exist?

Number of synthesized design CRITICAL WARNINGS: ___________

8. What types of CRITICAL WARNINGS exist? Cut/paste examples of each type below.

9. Run report_high_fanout_nets –load_types –max_nets 25

Number of high fanout nets NOT driven by FF: __________

Number of loads on highest fanout net NOT driven by FF: _________

10. Implement design. Run report_timing_summary after each step and fill out table below.

 WNS TNS Number of

Failing
Endpoints

WHS THS Number of
Failing
Endpoints

Opt
Place
Physopt
Route

© Copyright 2016 Xilinx
.

Directive Sweeping Flowchart

Pick Best Set of directives *OR* Compare Results Across Directives

Compare Timing Results & Select 1-2 best builds
Route_design using route

directive 1
Route_design using route

directive 2
Route_design using route

directive 3

Compare Timing Results & Select 1-2 best builds
 Phys_opt_design using

phys_opt directive 1
 Phys_opt_design using

phys_opt directive 2
 Phys_opt_design using

phys_opt directive 3

Read Opt_design DCP or Linked Design with Constraints
Place_design using place

directive 1
Place_design using place

directive 2
Place_design using place

directive 3

© Copyright 2016 Xilinx
.

DesignTimingSummaries.csv

Route Phys_opt Place WNS(ns) TNS(ns) TNS Failing TNS Total WHS(ns) THS(ns) THS Failing THS Total EWPWS(ns) TPWS(ns) TPWS Faili TPWS Tota File name
AdvancedSkewModeling Explore ExtraNetDelay_low -0.144 -1.278 18 356 0.096 0 0 356 2.1 0 0 850 route__Ad
AdvancedSkewModeling Explore SpreadLogic_low -0.113 -0.507 11 356 0.111 0 0 356 2.1 0 0 850 route__Ad
Default Explore ExtraNetDelay_low -0.144 -0.47 9 356 0.096 0 0 356 2.1 0 0 850 route__De
Default Explore SpreadLogic_low -0.125 -1.384 24 356 0.111 0 0 356 2.1 0 0 850 route__De
Explore Explore ExtraNetDelay_low -0.144 -0.657 10 356 0.096 0 0 356 2.1 0 0 850 route__Exp
Explore Explore SpreadLogic_low -0.126 -1.39 24 356 0.111 0 0 356 2.1 0 0 850 route__Exp
HigherDelayCost Explore ExtraNetDelay_low -0.191 -0.622 9 356 0.11 0 0 356 2.1 0 0 850 route__Hig
HigherDelayCost Explore SpreadLogic_low -0.101 -0.667 15 356 0.111 0 0 356 2.1 0 0 850 route__Hig
MoreGlobalIterations Explore ExtraNetDelay_low -0.144 -0.435 7 356 0.096 0 0 356 2.1 0 0 850 route__Mo
MoreGlobalIterations Explore SpreadLogic_low -0.136 -1.457 24 356 0.111 0 0 356 2.1 0 0 850 route__Mo
NoTimingRelaxation Explore ExtraNetDelay_low -0.144 -0.47 9 356 0.096 0 0 356 2.1 0 0 850 route__No
NoTimingRelaxation Explore SpreadLogic_low -0.125 -1.384 24 356 0.111 0 0 356 2.1 0 0 850 route__No
Quick Explore ExtraNetDelay_low -1.899 -108.065 125 356 -0.259 -9.083 60 356 2.1 0 0 850 route__Qu
Quick Explore SpreadLogic_low -2.01 -92.67 88 356 -0.249 -8.126 54 356 2.1 0 0 850 route__Qu
RuntimeOptimized Explore ExtraNetDelay_low -0.284 -1.987 26 356 0.096 0 0 356 2.1 0 0 850 route__Ru
RuntimeOptimized Explore SpreadLogic_low -0.168 -1.512 29 356 0.111 0 0 356 2.1 0 0 850 route__Ru

© Copyright 2016 Xilinx
.

Sweep Directives Demo
– Very simple demo (7 files)
– Easy to demo for customers
– Laptop
– Linux
– Linux with remote hosts (using ssh)

Demo

Directory Structure

© Copyright 2016 Xilinx
.

Directive Sweeping Results for a Real Design

Design Type: Comms
Significant IP: 10G XFI x2, RLDRAM I/F
Part: xc7v2000t-2L
Utilization:
– Slice: 56%
– FF: 23%
– BRAM: 52%

Clock Frequencies: 200 MHz core, 300+ GT (multiple), 500 MHz
RDLRAM, 100 MHz uP

© Copyright 2016 Xilinx
.

Create an optimized checkpoint (opt_design) that does _not_ contain a floorplan
Tcl script opens command terminals to implement design
Tcl script creates directories that match directive names
Tcl script runs variation of the script below in each Vivado shell:
– set place_directive <directive_name>
– read_checkpoint <opt_checkpoint>.dcp
– place_design -directive $place_directive
– report_timing_summary -file $place_directive.tmg.rpt
– write_checkpoint $place_directive.dcp
– #exit

Directive Sweeping Results for a Real Design

© Copyright 2016 Xilinx
.

Created set of composite timing results with tcl script
Hold time is not considered
– as long as post-place WHS < ~500ps

Directive Sweeping Results for a Real Design

© Copyright 2016 Xilinx
.

Directive Sweeping --- Place_design Results
Place_design
Directive

WNS TNS Total Err

Explore -1.750 -1706.488 974

WLDrivenBlockPlacement -1.951 -1492.123 764

LateBlockPlacement -1.614 -877.359 548

ExtraNetDelay_high -0.836 -29.283 35
ExtraNetDelay_medium -1.099 -48.552 44

ExtraNetDelay_low -1.341 -268.127 206

SpreadLogic_high -1.614 -954.618 591

SpreadLogic_medium -1.614 -954.618 591

SpreadLogic_low -1.750 -1706.488 974

ExtraPostPlacementOpt -1.750 -1706.488 974

SSI_ExtraTimingOpt -1.152 -283.900 246

SSI_SpreadSLLs -2.107 -1056.771 501

SSI_BalanceSLLs -2.005 -1108.340 552

SSI_BalanceSLRs -0.886 -29.709 33
SSI_HighUtilSLRs -2.450 -2367.354 966

© Copyright 2016 Xilinx
.

Directive Sweeping – Phys_opt Results (1)

The SSI_BalanceSLRs and ExtraNetDelay_high had similar results,
and were clearly better than the other attempts
These two DCPs were chosen for Exploration in phys_opt_design

Phys_opt_design
Directive

WNS TNS Total Err

Explore -0.409 -3.345 8

AggressiveExplore -0.409 -2.103 5

AlternateReplication -0.629 -17.727 28

AggressiveFanoutOpt -0.629 -10.584 16

AlternateDelayModeling -0.676 -18.165 26

AddRetime -0.629 -17.231 27

Placement = SSI_BalanceSLRs

© Copyright 2016 Xilinx
.

Directive Sweeping – Phys_opt Results (2)

The ExtraNetDelay_high and SSI_BalanceSLRs had similar results,
and were clearly better than the other attempts
These two DCPs were chosen for Exploration in phys_opt_design

Phys_opt_design
Directive

WNS TNS Total Err

Explore -0.014 -0.025 2

AggressiveExplore 0.046 0.000 0

AlternateReplication -0.558 -19.343 35

AggressiveFanoutOpt -0.558 -15.993 28

AlternateDelayModeling -0.628 -19.971 32

AddRetime -0.558 -19.343 34

Placement = ExtraNetDelay_high Placement

© Copyright 2016 Xilinx
.

Directive Sweeping -- Route_design Results

Phys_opt_design directive AggressiveExplore on placed DCP
ExtraNetDelay_high provided the best result
This DCP was selected to run in route_design

Route_design
Directive

WNS TNS Total Err

Explore 0.000 0.000 0

NoTimingRelaxation N/A N/A N/A

MoreGlobalIterations N/A N/A N/A

HigherDelayCost N/A N/A N/A

AdvancedSkewModeling N/A N/A N/A

RuntimeOptimized N/A N/A N/A

Placement = ExtraNetDelay_high Placement, Phys_opt = AggressiveExplore

Done!

© Copyright 2016 Xilinx
.

Closing Timing after Directive Sweeping

Create pblocks by “Reverse Engineering” the floorplan from the final route. See if this
improves run time.

Incremental design flow to retain placement results

© Copyright 2016 Xilinx
.

Directive Sweeping can rapidly unearth the optimal implementation options
A complex design can achieve timing closure without a floorplan, as was demonstrated
here
A good practice is to apply optimal implementation directives before applying any
floorplanning constraints
Looking at WNS in a vacuum is not enough – need to consider WNS ALONG with TNS
and total number of errors
If total number of errors < 100 at any step, review those errors to see if they can be
easily resolved by design change, constraint change or floorplan
If TNS is better than -30ns, you can proceed to the next step even if the WNS is worse
than -300ps

Conclusion

© Copyright 2016 Xilinx
.

Page 106

Implementation Analysis and Reporting

report_clock_utilization overhaul
– New structure and data for UltraScale and UltraScale+
– Includes related clock object and constraint info
– Text-based maps of utilization by clock region

report_design_analysis improvements
– Compare estimated without unrouting or loading placement

• -routed_vs_estimated
– Get the timing paths from logic levels distribution table:

• -logic_levels, -end_point_clock, -return_timing_paths
– Netlist Rent of a placed region

• -bounding_boxes
– Average Initial Router congestion

• Congestion router sees at outset
• Identifies real problem areas to analyze against
 the placement

VU095 Example:
Total Global Clocks
in each Clock Region

Rent of placed
regions

	ECOLE D’ELECTRONIQUE IN2P3 2016�20 Juin 2016�Grégory Donzel (XILINX FAE AVNET MEMEC SILICA)
	Agenda
	Agenda
	A Generation Ahead from 28nm to 16nm : �All 20nm UltraScale Devices In Volume Production NOW!
	A Generation Ahead from 28nm to 16nm:�Market Share
	Tools and Methodology: Tool Offering
	Agenda
	Tools and Methodology: Quick Survey…
	Critical Path could be a Moving Target�Example from a Real Design
	Impact of HDL Coding Style�
	Note sure about HDL Coding Style? Use Language Templates
	Using Language Templates: Coding to Match the Hardware
	LUT Combining�
	Gauging Other Design Metrics�
	Ultrafast Methodology Checks
	Review and Resolve Critical Warnings
	In a Word…
	Agenda
	Timing Constraints need to be “clean”�
	“Clean” Constraints for Rapid Timing Closure�
	Method to Create Good “Clean” Constraints
	In a Drawing: Progressive Approach to Design Closure
	Baselining Designs With VIVADO
	Baseline Stage 1: Constraint Development�Add IP Timing Constraints
	Baseline Stage 1: Constraint Development�Add IP Timing Constraints
	Baseline Stage 1: Constraint Development�Creating Clocks
	Baseline Stage 1: Constraint Development�Creating Clocks
	Diapositive numéro 28
	Diapositive numéro 29
	Diapositive numéro 30
	Diapositive numéro 31
	Diapositive numéro 32
	Diapositive numéro 33
	Diapositive numéro 34
	Diapositive numéro 35
	Diapositive numéro 36
	Diapositive numéro 37
	Diapositive numéro 38
	Diapositive numéro 39
	Setting Input / Output Delays
	Diapositive numéro 41
	Diapositive numéro 42
	Using Vivado Language Templates�XDC Template
	Synthesize and Implement after setting Input / Output Delays �
	Timing Exceptions: Less is More!
	Multicycle Paths
	Diapositive numéro 47
	Synthesize and Implement after setting Timing Exceptions�
	Diapositive numéro 49
	Timing Analysis, Reading Reports
	Understanding Timing Reports - Summary
	Understanding Timing Reports – Source Clock
	Understanding Timing Reports – Destination Clock
	Understanding Timing Reports – Data Path
	Understanding Timing Reports - Slack
	Agenda
	Timing Results Post Place Design
	Timing Results Post Phys Opt Design
	Timing Results Post Route Design
	Overconstraining
	Agenda
	What’s Next?
	Summary
	Thank You!
	Revenue Breakdown – March 2016
	Labs 1 - 2
	Using report_clock_networks
	Using report_clocks
	Labs 3-4
	Clock Interactions
	Clock Interactions
	Lab 5-6
	Cross-Probing
	Performance Baselining
	Summary
	Timing Results Post Place Design
	Timing Results Post Phys Opt Design
	Timing Results Post Route Design
	High Fanout Nets Driven by LUTs
	High Fanout Nets Driven by LUTs
	Long Logic Paths
	Long Logic Paths
	The Best Kept Secret To Acquire (almost) Free Timing Margin
	The Best Kept Secret To Acquire (almost) Free Timing Margin
	The Best Kept Secret To Acquire (almost) Free Timing Margin
	Demo
	Demo
	Demo
	Agenda
	ISE Tools That Were Tough To Let Go
	Vivado Tool For Running Multiple Builds
	Directive Sweeping with Vivado
	Directive Sweeping with Vivado
	Directive Sweeping Flowchart
	DesignTimingSummaries.csv
	Demo
	Directive Sweeping Results for a Real Design
	Directive Sweeping Results for a Real Design
	Directive Sweeping Results for a Real Design
	Directive Sweeping --- Place_design Results
	Directive Sweeping – Phys_opt Results (1)
	Directive Sweeping – Phys_opt Results (2)
	Directive Sweeping -- Route_design Results
	Closing Timing after Directive Sweeping
	Conclusion
	Implementation Analysis and Reporting

