— *De la Physique aux détecteurs*

La Physique Une sonde pour la Biologie

David Brasse

Institut Pluridisciplinaire Hubert Curien UMR 7178, ULP Strasbourg I, CNRS-IN2P3

Contact: david.brasse@ires.in2p3.fr -Fréjus, 2008

Influence de Max Delbrück sur la Biologie

La première expérience est révélatrice de sa formation

En physique: Etude de la matière = bombardement par des particules

En biologie, Il décide d'étudier le gène par le biais de l'effet que des rayonnements induisent sur celui-ci

Etudier les variations du taux de mutation en fonction de l'énergie du rayonnement utilisé.

1935: l'analyse de la fréquence des mutations permet d'estimer la dimension d'un gène (volume d'environ 10 distances atomiques de côté)

Muller en 1927 Concerne une dizaine de laboratoires

Avec des projets/plateformes R&D Ligne microfaisceau AIFIRA (radiobiologie) R&D associée au projet ETOILE (hadronthérapie) R&D ARCHADE à Caen (hadronthérapie) Projet ARRONAX à Nantes (Radiochimie et oncologie) Projet ImaBio à Strasbourg (imagerie clinique/préclinique) projet ImXgam à Marseille (imagerie hybride) Recentrage sur un projet « fédérateur »: Instruments et Méthodes pour la lutte contre le cancer

> Développements machines pour la radiothérapie et l'Hadronthérapie Contrôle Qualité faisceau hors et en ligne pour l'Hadronthérapie Dépôt de dose physique pour l'Hadronthérapie Développements spécifiques pour les expériences de radiobiologie Modélisation et évaluation expérimentale des mécanismes physiques et chimiques lors des irradiations Développements et utilisation de Plateformes de Modélisation (GATE, THIS) Utilisation des grilles de calcul pour le biomédical Contrôle dose en ligne Imagerie moléculaire préclinique hybride Système d'assistance clinique Production de radioéléments à usage médical

Nous sommes curieux de savoir comment nous sommes à l'intérieur...

...mais nous n'aimons pas être meurtris!

#006

HIBISCUS(C) 1997 STEVEN MEYERS

#009

Rodolphe von Gombergh

Nous sommes également curieux de comment...

9

L'imagerie in vivo du petit animal: un défi certain

Imagerie Moléculaire

Manchester institute

Tomodensitomètre X

Système IRM

Julich Research center

Système TEMP

Autoradiographie

Système Ultrason

12

Systèmes optiques Bioluminescence fluorescence

Imagerie par transmission

Principe du tomographe

Les microTDM sont actuellement utilisés comme:

Support anatomique pour

L'imagerie TEP

Liang et al, Phys Med Biol 52: 3881-3894, 2007

mais également, l'imagerie TEMP et optique.

Aide à la quantification:

correction d'atténuation, de diffusion, de résolution...

Outil diagnostique:

Imagerie osseuse

Imagerie pulmonaire

Imagerie de perfusion

Imagerie cardiaque

Greschus et al, Neoplasia 7: 730-740, 2005

Imagerie rénale

Imagerie morphologique et fonctionnelle: résumé

Imagerie osseuse Bénéficie du très bon contraste os / tissus mous

Imagerie rénale / imagerie cérébrale

Injection d'un produit de contraste approprié. $T_{1/2}$ en accord avec le temps de prise de mesure.

Imagerie cardiaque

Injection d'un produit de contraste approprié. T_{1/2} en accord avec le temps de prise de mesure. Figer l'organe pendant la prise de mesure: gating cardiaque ou post gating

Imagerie pulmonaire

Contraste naturel entre l'air et les tissus mous Figer les poumons pendant la prise de mesure: gating respiratoire, intubation, breath hold

Les microTDM se composent:

W Kalender, IMP-Erlangen

Composante TDM de la plate-forme AMISSA

-D'un statif

Objet tourne

Avantages: source X puissante, effet de zoom important
Inconvénient: physiologie de l'animal

Système tourne

Avantages: « slip ring », position « normale » de l'animal
Inconvénients: limité en zoom, en puissance de tube

D'un détecteur (détection directe ou indirecte)

D'un tube à rayons X (micro foyer ou mammographie)
D'un « objet » à imager (in vivo ou ex vivo)

Caractéristiques du tube X

Taille du point focal ($x_{f,FWHM}$)

Puissance maximale délivrée: $P_{\text{max}} = 1,4 \times (x_{f,FWHM})^{0,88}$

Compromis entre la résolution spatiale, le temps d'acquisition et la qualité de l'image

Caractéristiques du détecteur

Efficacité de détection
Facteur de remplissage
Uniformité, linéarité
Rémanence
Résolution spatiale intrinsèque
Dynamique
Rapport signal à bruit
Rapidité de lecture

Choix du tube X

Hamamatsu, L8601-01

Micro foyer X $(7\mu m)$ Voltage: 20 à 90 kV Intensité: 0 à 250 μ A P_{max}: 10 W Ouverture: 39° Fonctionne en continu Anode: Tungstène

Travaux effectués en collaboration avec le groupe RAMSES (IPHC, Strasbourg)

Stabilité du point focal

Choix du détecteur X

Csl / photodiode 120 x 120 mm² 2400 x 2400 pixels Pixel de 50µm 470ms/projection Modes de réarrangement 2x2 (4 images/s) 4x4 (9 images/s)

Aiguille de Csl

7 pl/mm ~> 71 μ m de résolution

Lee et al, Phys Med Biol 48: 4173-4185 (2003) Kim et al, TNS, 52: 193-198 (2005) Goertzen et al, Phys Med Biol 49: 5251-5265 (2004)

Construction du système microTDM

Anatomie d'une projection

$$S(E) \times D(E) \times e^{-\int_{L}^{\mu(E,x,y,z)dL} dE + b}$$
Approximation

Approximation Artefacts de durcissement de faisceau Image: state stat

0,005

0

64 128 192 256 320 384 448 512

Position radiale (pixels)

Corrections Utilisation d'un filtre d'Aluminium Epaisseur: 0,5 mm

40

Réduction de la courbure Erreur de quantification

Rayonnement diffusé

Étude de l'angiogénèse

Ligature de l'artère fémorale chez le rat Injection d'un produit de contraste

Travaux réalisés en collaboration avec la Faculté de Pharmacie de Strasbourg (N Etienne, A Walter)

Reconstruction de l'image

Objectif: acquisition/reconstruction en ligne

Acquisition

$$R_{\beta}(p,\xi) = \ln\left(\frac{I_0(p,\xi) - I_D(p,\xi)}{I(p,\xi) - I_D(p,\xi)}\right)$$

$$T = \left(T_{read} + T_{\log} + T_{flt} + \sum_{i=1}^{n} T_{bkp}^{i}\right)M$$

$$Q_{\beta}(p,\xi) = \frac{D_{SO}}{\sqrt{D_{SO}^2 + p^2 + \xi^2}} R_{\beta}(p,\xi) * \frac{1}{2}h(p)$$

$$f(x, y, z) = \int_{0}^{2\pi} \frac{D_{SO}^{2}}{(D_{SO} + x\sin\beta - y\cos\beta)^{2}} \cdot Q_{\beta} \left(\frac{D_{SO}x\cos\beta + D_{SO}y\sin\beta}{D_{SO} + x\sin\beta - y\cos\beta}, \frac{D_{SO}z}{D_{SO} + x\sin\beta - y\cos\beta} \right)$$

 $d\beta$

Taille du voxel de l'image

40kVp, 250µA, 0,5 mm Al, 470 ms

Taille du pixel de projection

Modèle murin du cancer du sein

Moins de tumeurs pour les souris ST3 +/+ mais taux de croissance supérieur

La respiration limite la détection dans la région pulmonaire Etude longitudinale: limiter la dose (48 mGy/acquisition)

Travaux réalisés en collaboration avec l'IGBMC (MC Rio, C Mathelin)

Physiologie de l'animal

Déclenchement sur le rythme respiratoire

Augmentation de la dose: implémentation d'un obturateur rapide

Imagerie fonctionnelle

154 mGy

-100

Time after injection (mn)

120 160

22 mGy/acquisition
Réduction de la dose

Binning 1x1 768 projections 358 s, 154 mGy R=50 µm

Binning 2x2 360 projections 85 s, 36 mGy R=85 µm Binning 4x4

Binning 4x4 180 projections 21 s, 4,3 mGy R=155 µm

Vers la reconstruction itérative...

Implémentation des opérateurs sur carte graphique

		x 30
	CPU	GPU
Rétroprojection/projection (ms)	5306	162
Lecture+log+filtrage+rétroprojection (s)	4390	341
	ţ	x 12

Imagerie cérébrale: visualisation de calcifications

Travaux réalisés en collaboration avec la Faculté de médecine (G Sandner, M-J Angst)

Imagerie ex-vivo

Effet du resveratrol sur la densité osseuse

Travaux réalisés en collaboration avec le DEPE

Etude tumorale

Travaux réalisés en collaboration avec la Faculté de Pharmacie de Strasbourg (N Etienne, A Walter)

L'imagerie in vivo du petit animal: un défi certain

Développement de produits de contraste appropriés Couplage avec l'imagerie fonctionnelle

Comment ne pas parler d'IRM...

Coupe sagittale d'un cerveau de souris par IRM

Quantification des flux sanguins dans les carotides de souris Source: J-M Franconi, CNRS UMR 5536

Neurospin: Missions Cartographier les fonctions cérébrales de plus en plus précisément Mesurer les étapes de traitement de l'information Elucider le code neural Comprendre et traiter les pathologies cérébrales

Imagerie d'émission: principe

Acte I

Traceur caractéristique d'une fonction métabolique ou physiologique

radiotraceur

Marquage de la molécule

Acte III

Injection et étude de la répartition de la molécule marguée

Exemple du FDG

Isotopes couramment utilisés

Période Energie Isotope

Emetteurs y

Technétium 99m 140 keV (89%) 6,02 heures Iode 123 27 (71%) 159 keV (83%) 13,2 heures Thallium 201 71 keV (47%)

73 heures

Emetteurs B+

Oxygène 15 1738 keV Carbone 11 960 keV Fluor 18 634 keV 3980 keV Brome 76

2,1 minutes 20,4 minutes 109,8 minutes 972 minutes

Technique d'imagerie associée

Emetteurs γ

Emetteurs β+

Tomographie par émission monophotonique (TEMP) Tomographie par émission de positons (TEP)

Principe de la TEMP

NanoSPECT @ Bioscan

Sub-mm total body U-SPECT imaging

U-SPECT gated mouse cardiac perfusion imaging

ED

Dopamine = neurotransmetteur = substance biochimique libérée par les neurones Elle est notamment le précurseur de l'adrénaline Au niveau du système nerveux central, elle a globalement un effet stimulant et est impliquée dans les phénomènes de dépendances. FP-CIT ~ Transporteur de la dopamine

Movie of displacement of FP-CIT using cocaine (injected at t=0) Each SPECT scan is 45s. 15 minutes ᠕ᠬ before injection 0.8 0.9 stal FP-CIT 2'0 8'0 11 LTS 0.6 0.5 -20 -10 10 20 30 40 50 0 Time (minutes) *i*. *M*ILabs

H KAILabs

La <u>cocaïne</u> provoque une inversion du fonctionnement du système de <u>recapture</u> de la dopamine qui est chargé de diminuer son action.

Elle est impliquée dans le phénomène de contrôle des fonctions motrices Parkinson: dégénérescence d'un groupe de neurones produisant de la dopamine. Schizophrénie: sur-utilisation de la dopamine présente dans le cerveau entraîne. → hallucinations et perturbations de la pensée et des émotions.

P. Brueghel

Anatomie

Fonction

Intérêt de la bimodalité TEP/CT?

Examen FDG: poumon ou os?

University of Pittsburgh

Examen ¹²⁴I: os ou tissu?

Memorial Sloan Kettering

A Multimodality Imaging System for Small Animal @ IPHC

micro Tomographie d'Emission MonoPhotonique

Anatomie d'un module de détection

Tungsten material Keel edge shape Aperture ranging from 0.5 mm to 1.5 mm Magnification of 2.1

Anatomie d'un module de détection

8 x 8 array of YAP:Ce crystals Crytur, Turnov, CZ Crystal size: 2.3 x 2.3 x 28 mm³ Optically glued to the PMT

Anatomie d'un module de détection

Tube photomultiplicateur

Solution retenue

Électronique compacte

Protocole d'acquisition

♦ Injection de 2.5 mCi de ^{99m}TcO₄-

Acquisition microCT
768 projections sur 360°, binning 2x2, 4 projections/s
3 minutes acquisition/reconstruction

Acquisition microSPECT (1 caméra)
128 projections sur 360°, 15s/projection

Couplage Fonction / Anatomie

Principe de la TEP

La micro Tomographie par Emission de Positons

Exemple de microTEP: microPET II @ UCLA

Diamètre du détecteur: Diamètre FOV: FOV axial: Type:

Cristal: Photo détecteur : Taille du cristal: Efficacité absolue: Résolution tr (@centre): Résolution axiale: 160 mm 80 mm 49 mm (3D) 90 modules (3 couronnes) de 14 x 14 cristaux LSO MA-PMT 0,975 x 0,975 x 12,5 mm³ 2,26 % (> 250 keV) 0,83 mm 1,25 mm

Crump institute

Type de cristaux Majoritairement LSO:Ce

Codage

$$LTMH = k \sqrt{\left(\frac{d}{2}\right)^{2} + (0,0022D)^{2} + r_{p}^{2} + b^{2}}$$

Tracer: 11C-CFT Imaging Time: 50 mins. Injected Dose: Monkey 5 mCi, Rat 1 mCi, Mouse 180 µCi

Crump Institute (http://www.crump.ucla.edu/)

Species: Rat Type of Study: Heart Tracer: 18F-FDG Injected Dose: 2 mCi Imaging Time: 30 mins

> Species: Mouse Type of Study: Bone Scan (Whole Body) Tracer: F-Injected Dose: 1.0 mCi Imaging Time: 8 mins / bed position, 4 positions

Profondeur d'interaction (DOI)

Exemple de projets pour mesurer la DOI

Lawrence Berkley Laboratory

UC Davis

INFN, Pisa University

Stanford University

Géométrie axiale:

Découplage de la résolution et de l'efficacité de détection

Cristaux orientés axialement

PETT IV par Ter-Pogossian et col. Université de Washington, 1978

Prototype Xénon liquide par S Jan et col. LPSC-IN2P3, 2002

Axial-PET par Braem et col. CERN, 2005

Résolution transverse

La résolution transverse est donnée par la section du cristal.

$$LTMH = k \sqrt{\left(\frac{d}{2}\right)^2 + (0,0022D)^2 + r_p^2 + k^2} = 1 \text{ mm}$$

1,2 60 mm 0,15 mm $d = 1,5 \text{ mm}$

Résolution axiale

La résolution axiale est donnée par le contraste des charges collectées de chaque côté

Z

 $S_{L} = N_{ph} \varepsilon_{C} e^{-\mu^{*} z}$ $S_{R} = N_{ph} \varepsilon_{C} e^{-\mu^{*}(H-z)}$

avec $\mu^* = Az^2 + Bz + C$

le coefficient d'atténuation effectif pour les photons optiques

Une courbe de calibration représentant le contraste (C) en fonction de la position est calculée

Choix du cristal: privilégier le rendement lumineux

Scintillateurs	Densité (g/cm ³)	Rendement (ph/511keV)	Décroissance (ns)	µ @511 keV (cm⁻¹)
Nal:Tl	3,67	19400	230	0,34
BGO	7,13	4200	300	0,96
LSO:Ce	7,40	~ 13000	~ 47	0,88
GSO:Ce	6,71	~ 4600	~ 56	0,70
YAP:Ce	5,37	~ 9200	~ 27	0,46
LaBr ₃ :Ce	5,29	32000	16	0,45
LaCl ₃ :Ce	3,86	23000	25	0,36
LuAP:Ce	8,34	5110	18	0,95
LYSO:Ce	7,11	17300	41	0,83 🖛
Quelle doit être la longueur du cristal de LYSO:Ce de section 1,5 mm pour obtenir une résolution spatiale dans la direction axiale de 1 mm ?

Choix du revêtement (cristal de LYSO de longueur 20 mm)

Surface treatment	Mean energy resolution (%)	\overline{R}_{Meas} (mm)	\overline{R}_i (mm)
Polished	15.4 ± 1.2	$4.7\ \pm 1.3$	$4.5\ \pm 2.0$
Teflon wrapping	16.5 ± 1.6	$1.8\ \pm 0.5$	$1.3\ \pm 0.4$
White paint + TiO_2	19.1 ± 1.9	$1.3\ \pm 0.3$	$0.5\ \pm 0.3$

Pourcentage de TiO₂ dans PMMA (cristal de LYSO de longueur 20 mm)

Détermination de la longueur optimale du cristal

LYSO crystal length (mm)	Mean spatial resolution (mm)	Mean spatial resolution for the five crystals (mm)	Mean spatial resolution for the five crystals (wide-open energy window) (mm)	
20	0.50 ± 0.24	0.55 ± 0.03	0.70 ± 0.13	
25	0.62 ± 0.26	0.67 ± 0.07	1.59 ± 0.06	
30	1.11 ± 0.42	1.17± 0.07	2.05 ± 0.06	
35	1.37 ± 0.35	1.41 ± 0.13	2.06 ± 0.22	

Efficacité de détection

L'efficacité de détection va dépendre :

- de l'arrangement géométrique des cristaux (maximiser l'angle solide)
- du nombre de cristaux dans la direction radiale

Prototype proposé

Composé de quatre modules de détection Champ de vue transverse: 60 mm Champ de vue axial: 25 mm

Chaque module est composé:

Une matrice de 32x24 cristaux de LYSO (1,5 x 1,5 x 25 mm³) 24 cristaux \rightarrow 3 longueurs d'atténuation

Deux Planacons 1024 voies

Description du photodétecteur utilisé

Face photocathode

Face anodes

Données constructeur

Fenêtre: Borosilicate Photocathode: Bialkali Amplification: MCP (25 µm,2x1mm) Anodes: 32 x 32 (1,4 x 1,4) Pitch: 1,6 mm

Gain: 6x10⁵ @ 2400 V Temps de monté: 600 ps Largeur du signal: 1,8 ns Uniformité des anodes: 1:1,5

Développement d'une connectique

Seuil de déclenchement: > 4pe @ 2200 V Temps de montée: (608±107) ps

Electronique de lecture

625 ps de pas d'échantillonnage temporel Gamme de fonct.: $0 \rightarrow 104$ pC Seuil: 500 fC max (5 bits)

En résumé...

Résolution volumétrique: 1 µl Fenêtre de coïncidence: < 2 ns Efficacité de détection: 18 %

Talon d'Achille: Champ de vue axial

Acquisition en mode continu...

...permet d'augmenter artificiellement le champ de vue axial

Cristal

	Scintillateurs	Densité (g/cm ³)	Rendement (ph/511keV)	Décroissance (ns)	µ @511 keV (cm⁻¹)	
	Nal:Tl	3,67	19400	230	0,34	
	LSO:Ce	7,40	~ 13000	~ 47	0,88	
	– LaBr ₃ :Ce	5,29	32000	16	0,45	
	LaCl ₃ :Ce	3,86	23000	25	0,36	
	LYSO:Ce	7,11	17300	41	0,83	
Problèmes: hygroscopique disponible pour section> 4 mm						
	Tibercr'yst INNOVATION IN OPTICS					

Photodétecteur		
		coût/voie (euros)
Candidats potentiels	Planacon	5
	SiPM	100
	APD	80
	PM64voies	40
Matrice APD SiPM		

Perspective ou fiction?

Champ de vue axial: 100 mm Résolution volumétrique: 1 µl Efficacité de détection: 50 %

Champ de vue axial: 200 mm Diamètre: 30 cm 64 modules, 49152 cristaux Résolution volumétrique: 1 µl Efficacité de détection: 39 %

Cluster de compétences autour de l'Imagerie Moléculaire

Recherche fondamentale en Biologie

Développement/Production d'isotopes de radiopharmaceutiques, d'agents de contraste

Hôtellerie animale

Développement d'instruments dédiés Plateforme d'imagerie multimodale Traitement du signal/image Analyse des données

Diagnostic

Examen clinique Imagerie médicale

– Thérapie

Radiothérapie (externe, interne, métabolique) Hadronthérapie La chimiothérapie (ciblée) Chirurgie

- Compréhension du phénomène —

Radiobiologie: interaction rayonnement / cellule Imagerie in vitro Imagerie cellulaire Imagerie in vivo

- BioInformatique

