La Physique Une sonde pour la Biologie

David Brasse
Institut Pluridisciplinaire Hubert Curien
UMR 7178, ULP Strasbourg I, CNRS-IN2P3

Influence de Max Delbrück sur la Biologie

La première expérience est révélatrice de sa formation

En physique:

Etude de la matière = bombardement par des particules

En biologie,

Il décide d'étudier le gène par le biais de l'effet que des rayonnements induisent sur celui-ci

Etudier les variations du taux de mutation en fonction de l'énergie du rayonnement utilisé.

1935: l'analyse de la fréquence des mutations permet d'estimer la dimension d'un gène (volume d'environ 10 distances atomiques de côté)

L'interface aujourd'hui à l'IN2P3 (IRFU?)

Concerne une dizaine de laboratoires

Avec des projets/plateformes R&D

Ligne microfaisceau AIFIRA (radiobiologie)

R&D associée au projet ETOILE (hadronthérapie)

R&D ARCHADE à Caen (hadronthérapie)

Projet ARRONAX à Nantes (Radiochimie et oncologie)

Projet ImaBio à Strasbourg (imagerie clinique/préclinique)

projet ImXgam à Marseille (imagerie hybride)

Recentrage sur un projet « fédérateur »: Instruments et Méthodes pour la lutte contre le cancer

Développements machines pour la radiothérapie et l'Hadronthérapie
Contrôle Qualité faisceau hors et en ligne pour l'Hadronthérapie
Dépôt de dose physique pour l'Hadronthérapie
Développements spécifiques pour les expériences de radiobiologie
Modélisation et évaluation expérimentale des mécanismes physiques
et chimiques lors des irradiations
Développements et utilisation de Plateformes de Modélisation (GATE, THIS)
Utilisation des grilles de calcul pour le biomédical
Contrôle dose en ligne
Imagerie moléculaire préclinique hybride
Système d'assistance clinique
Production de radioéléments à usage médical

...mais nous n'aimons pas être meurtris!

David Teplica, Birth of man with homage to Michelangelo (1987)

Nous sommes également curieux de comment...

...nos organes fonctionnent

Environ 30 000 gènes chacun Seuls 300 gènes diffèrent

Outil fabuleux pour la recherche médicale

L'imagerie in vivo du petit animal: un défi certain

Imagerie Moléculaire

Système TEP

Tomodensitomètre X

Système IRM

Julich Research center

Système TEMP

Autoradiographie

Système Ultrason

Systèmes optiques Bioluminescence fluorescence

Imagerie par transmission

$$I = I_0 e^{-\int_L \mu_E(x, y, z) dL}$$

$$\int_{L} \mu_{E}(x, y, z) dL = \ln \frac{I_{0}}{I}$$

Hypothèse: E constante

Principe du tomographe

Système homme

Système animal

Les microTDM sont actuellement utilisés comme:

Support anatomique pour

L'imagerie TEP

Liang et al, Phys Med Biol 52: 3881-3894, 2007

mais également, l'imagerie TEMP et optique.

Aide à la quantification:

correction d'atténuation, de diffusion, de résolution...

Outil diagnostique:

Imagerie osseuse

Imagerie pulmonaire

Imagerie de perfusion

Imagerie cardiaque

Imagerie morphologique et fonctionnelle: résumé

Imagerie osseuse

Bénéficie du très bon contraste os / tissus mous

Imagerie rénale / imagerie cérébrale

Injection d'un produit de contraste approprié. $T_{1/2}$ en accord avec le temps de prise de mesure.

Imagerie cardiaque

Injection d'un produit de contraste approprié.

 $T_{1/2}$ en accord avec le temps de prise de mesure.

Figer l'organe pendant la prise de mesure: gating cardiaque ou post gating

Imagerie pulmonaire

Contraste naturel entre l'air et les tissus mous

Figer les poumons pendant la prise de mesure: gating respiratoire, intubation, breath hold

Les microTDM se composent:

W Kalender, IMP-Erlangen

Composante TDM de la plate-forme AMISSA

~D'un statif

- ~ Objet tourne
 - -Avantages: source X puissante, effet de zoom important
 - -Inconvénient: physiologie de l'animal
- ~ Système tourne
 - -Avantages: « slip ring », position « normale » de l'animal
 - -Inconvénients: limité en zoom, en puissance de tube
- ~D'un détecteur (détection directe ou indirecte)
- -D'un tube à rayons X (micro foyer ou mammographie)
- ~D'un « objet » à imager (in vivo ou ex vivo)

Caractéristiques du tube X

Taille du point focal ($x_{f,FWHM}$)

Puissance maximale délivrée: $P_{\text{max}} = 1,4 \times (x_{f,FWHM})^{0.88}$

Compromis entre

la résolution spatiale, le temps d'acquisition et la qualité de l'image

Caractéristiques du détecteur

Efficacité de détection

Facteur de remplissage

Uniformité, linéarité

Rémanence

Résolution spatiale intrinsèque

Dynamique

Rapport signal à bruit

Rapidité de lecture

Choix du tube X

Hamamatsu, L8601-01

Micro foyer X (7μ m) Voltage: 20 à 90 kV Intensité: 0 à 250 μ A

P_{max}: 10 W

Ouverture: 39°

Fonctionne en continu Anode: Tungstène

Travaux effectués en collaboration avec le groupe RAMSES (IPHC, Strasbourg)

Stabilité du point focal

Choix du détecteur X

Hamamatsu, C7942

Csl / photodiode
120 x 120 mm²
2400 x 2400 pixels
Pixel de 50µm
470ms/projection
Modes de réarrangement
2x2 (4 images/s)
4x4 (9 images/s)

Aiguille de Csl

7 pl/mm ~> 71μm de résolution

Lee et al, Phys Med Biol 48: 4173-4185 (2003) Kim et al, TNS, 52: 193-198 (2005) Goertzen et al, Phys Med Biol 49: 5251-5265 (2004)

Construction du système microTDM

Résolution spatiale (mm):
$$\sqrt{\left(\frac{F}{COR} \times x_{f,FWHM}\right)^2 + \left(\frac{COR}{F} \times x_{d,FWHM}\right)^2} = 50 \ \mu \text{m}$$
source détecteur

Anatomie d'une projection

Approximation | Artefacts de durcissement de faisceau 0,045 0,035 0,005 -0,005 64 128 192 256 320 384 448 512 Position radiale (pixels) 5 mm d'eau 10 mm d'eau (I/OI)BOI 1,6 1,4 1,2 Flux de photons (U.A.) Flux de photons (U.A.) 0,8 <E>=23,6 keV <E>=20,8 keV \rightarrow μ =0,073 mm⁻¹ $\rightarrow \mu = 0.057 \text{ mm}^{-1}$ 0,6 0,4 0,2 10 20 30 10 20 30 40 40 20

Energie (keV)

Energie (keV)

Epaisseur (mm)

Corrections

Utilisation d'un filtre d'Aluminium

Epaisseur: 0,5 mm

Réduction de la courbure Erreur de quantification

Rayonnement diffusé

Étude de l'angiogénèse

Ligature de l'artère fémorale chez le rat Injection d'un produit de contraste

Travaux réalisés en collaboration avec la Faculté de Pharmacie de Strasbourg (N Etienne, A Walter)

Reconstruction de l'image

Objectif: acquisition/reconstruction en ligne

$$T = \left(T_{read} + T_{\log} + T_{flt} + \sum_{i=1}^{n} T_{bkp}^{i}\right) M$$

$$R_{\beta}(p,\xi) = \ln \left(\frac{I_0(p,\xi) - I_D(p,\xi)}{I(p,\xi) - I_D(p,\xi)} \right)$$

$$Q_{\beta}(p,\xi) = \frac{D_{SO}}{\sqrt{D_{SO}^2 + p^2 + \xi^2}} R_{\beta}(p,\xi) * \frac{1}{2} h(p)$$

$$f(x,y,z) = \int_{0}^{2\pi} \frac{D_{SO}^{2}}{(D_{SO} + x\sin\beta - y\cos\beta)^{2}} \cdot Q_{\beta} \left(\frac{D_{SO}x\cos\beta + D_{SO}y\sin\beta}{D_{SO} + x\sin\beta - y\cos\beta}, \frac{D_{SO}z}{D_{SO} + x\sin\beta - y\cos\beta} \right) d\beta$$

Taille du voxel de l'image

40kVp, 250μA, 0,5 mm Al, 470 ms

50 μm

Temps de reconstruction identique

25 μm

Taille du pixel de projection

Modèle murin du cancer du sein

Moins de tumeurs pour les souris ST3 +/+ mais taux de croissance supérieur

La respiration limite la détection dans la région pulmonaire Etude longitudinale: limiter la dose (48 mGy/acquisition)

Physiologie de l'animal

Rythme respiratoire Ventilations pulmonaire par minute

Souris Rat 136 à 216 66 à 114 Rythme cardiaque

Pulsations par minute

520 à 780

270 à 350

Graph

Volume sanguin
(70 ml/kg)
~1,4 ml
~20 ml

Déclenchement sur le rythme respiratoire

Augmentation de la dose: implémentation d'un obturateur rapide

Imagerie fonctionnelle

154 mGy

22 mGy/acquisition

Réduction de la dose

Binning 1x1 768 projections 358 s, 154 mGy R=50 µm

Binning 2x2 360 projections 85 s, 36 mGy R=85 µm

Binning 4x4 180 projections 21 s, 4,3 mGy R=155 µm

Vers la reconstruction itérative...

Implémentation des opérateurs sur carte graphique

x 12

Imagerie cérébrale: visualisation de calcifications

Imagerie ex-vivo

Effet du resveratrol sur la densité osseuse

Travaux réalisés en collaboration avec le DEPE

Etude tumorale

Travaux réalisés en collaboration avec la Faculté de Pharmacie de Strasbourg (N Etienne, A Walter)

L'imagerie in vivo du petit animal: un défi certain

Développement de produits de contraste appropriés Couplage avec l'imagerie fonctionnelle

Comment ne pas parler d'IRM...

Coupe sagittale d'un cerveau de souris par IRM

Quantification des flux sanguins dans les carotides de souris Source: J-M Franconi, CNRS UMR 5536

Neurospin: Missions

Cartographier les fonctions cérébrales de plus en plus précisément Mesurer les étapes de traitement de l'information Elucider le code neural Comprendre et traiter les pathologies cérébrales

Imagerie d'émission: principe

Acte I

Traceur caractéristique d'une fonction métabolique ou physiologique

Acte II

Marquage de la molécule

radiotraceur

Acte III

Injection et étude de la répartition de la molécule marquée

Exemple du FDG

Isomérisation =
Réarrangement du groupe carbonyle

Fructose-6-phosphate

FDG-6-phosphate

Par manque d'atome d'oxygène sur le groupe carbonyle

Ce composé est bloqué au sein de la cellule et permet donc d'étudier la captation du glucose par les cellules.

Isotopes couramment utilisés

Isotope

Energie

Période

Emetteurs y

Thallium 201

Technétium 99m 140 keV (89%) 6,02 heures Iode 123 27 (71%) 159 keV (83%) 13,2 heures 71 keV (47%)

73 heures

Emetteurs B+

Oxygène 15 Carbone 11 Fluor 18 Brome 76

1738 keV 960 keV 634 keV 3980 keV

2,1 minutes 20,4 minutes 109,8 minutes 972 minutes

Technique d'imagerie associée

Emetteurs y

 γ

Emetteurs B+

 β +

Tomographie par émission monophotonique (TEMP)

Tomographie par émission de positons (TEP)

Principe de la TEMP

Injection du radiotraceur Emission isotrope 1ère étape: Sélection du rayonnement

 $R_{i} = 2.3 \ mm$

Sub-mm total body U-SPECT imaging

Rat collimator

Mouse collimator

U-SPECT gated mouse cardiac perfusion imaging

Dopamine = neurotransmetteur = substance biochimique libérée par les neurones Elle est notamment le précurseur de l'adrénaline Au niveau du système nerveux central, elle a globalement un effet stimulant et est impliquée dans les phénomènes de dépendances. FP-CIT ~ Transporteur de la dopamine

La <u>cocaïne</u> provoque une inversion du fonctionnement du système de <u>recapture</u> de la dopamine qui est chargé de diminuer son action.

Anatomie

Fonction

Intérêt de la bimodalité TEP/CT?

Examen FDG: poumon ou os?

Examen 124I: os ou tissu?

University of Pittsburgh

Memorial Sloan Kettering

A Multimodality Imaging System for Small Animal @ IPHC

micro Tomographie d'Emission MonoPhotonique

Anatomie d'un module de détection

Tungsten material Keel edge shape Aperture ranging from 0.5 mm to 1.5 mm Magnification of 2.1

Anatomie d'un module de détection

8 x 8 array of YAP:Ce crystals Crytur, Turnov, CZ Crystal size: 2.3 x 2.3 x 28 mm³ Optically glued to the PMT

Anatomie d'un module de détection

Tube photomultiplicateur

Solution retenue

Électronique compacte

Protocole d'acquisition

- ♦ Injection de 2.5 mCi de ^{99m}TcO₄
- ♦ Acquisition microCT
 768 projections sur 360°, binning 2x2, 4 projections/s
 3 minutes acquisition/reconstruction

♦ Acquisition microSPECT (1 caméra)
 128 projections sur 360°, 15s/projection

Couplage Fonction / Anatomie

Principe de la TEP

La micro Tomographie par Emission de Positons

Exemple de microTEP: microPET II @ UCLA

Diamètre du détecteur: 160 mm
Diamètre FOV: 80 mm
FOV axial: 49 mm (3D)

Type: 90 modules (3 couronnes)

de 14 x 14 cristaux

Cristal: LSO

Photo détecteur : MA-PMT

Taille du cristal: $0,975 \times 0,975 \times 12,5 \text{ mm}^3$

Efficacité absolue: 2,26 % (> 250 keV)

Résolution tr (@centre): 0,83 mm Résolution axiale: 0,83 mm

Crump institute

Type de cristaux Majoritairement LSO:Ce Codage $LTMH = k\sqrt{\left(\frac{d}{2}\right)^2 + \left(0.0022D\right)^2 + r_p^2 + b^2}$

Tracer: 11C-CFT
Imaging Time: 50 mins.
Injected Dose:
Monkey 5 mCi, Rat 1 mCi, Mouse 180 μCi

Species: Rat

Type of Study: Heart

Tracer: 18F-FDG

Injected Dose: 2 mCi Imaging Time: 30 mins

Species: Mouse

Type of Study: Bone Scan (Whole Body)

Tracer: F-

Injected Dose: 1.0 mCi

Imaging Time: 8 mins / bed position, 4 positions

Profondeur d'interaction (DOI)

Exemple de projets pour mesurer la DOI

Lawrence Berkley Laboratory

UC Davis

INFN, Pisa University

Stanford University

Géométrie axiale:

Découplage de la résolution et de l'efficacité de détection

Cristaux orientés axialement

PETT IV par Ter-Pogossian et col. Université de Washington, 1978

Prototype Xénon liquide par S Jan et col. LPSC-IN2P3, 2002

Axial-PET par Braem et col. CERN, 2005

Résolution transverse

La résolution transverse est donnée par la section du cristal.

Résolution axiale

La résolution axiale est donnée par le contraste des charges collectées de chaque côté

avec
$$\mu^* = Az^2 + Bz + C$$

le coefficient d'atténuation effectif pour les photons optiques

$$S_L = N_{ph} \varepsilon_C e^{-\mu^* z}$$

 $S_R = N_{ph} \varepsilon_C e^{-\mu^* (H-z)}$

Une courbe de calibration représentant le contraste (C) en fonction de la position est calculée

$$C = \frac{S_R - S_L}{S_R + S_L} = f(z)$$

Choix du cristal: privilégier le rendement lumineux

Scintillateurs	Densité (g/cm³)	Rendement (ph/511keV)	Décroissance (ns)	μ @511 keV (cm ⁻¹)
Nal:Tl	3,67	19400	230	0,34
BGO	7,13	4200	300	0,96
LSO:Ce	7,40	~ 13000	~ 47	0,88
GSO:Ce	6,71	~ 4600	~ 56	0,70
YAP:Ce	5,37	~ 9200	~ 27	0,46
LaBr ₃ :Ce	5,29	32000	16	0,45
LaCl ₃ :Ce	3,86	23000	25	0,36
LuAP:Ce	8,34	5110	18	0,95
LYSO:Ce	7,11	17300	41	0,83

Quelle doit être la longueur du cristal de LYSO: Ce de section 1,5 mm pour obtenir une résolution spatiale dans la direction axiale de 1 mm?

Choix du revêtement (cristal de LYSO de longueur 20 mm)

Surface treatment	Mean energy resolution (%)	\overline{R}_{Meas} (mm)	\overline{R}_i (mm)
Polished	15.4 ± 1.2	$4.7\ \pm 1.3$	$4.5\ \pm2.0$
Teflon wrapping	16.5 ± 1.6	$1.8\ \pm0.5$	$1.3\ \pm0.4$
White paint + TiO ₂	19.1 ± 1.9	$1.3\ \pm0.3$	$0.5\ \pm0.3$

Pourcentage de TiO₂ dans PMMA (cristal de LYSO de longueur 20 mm)

Détermination de la longueur optimale du cristal

LYSO crystal length (mm)	Mean spatial resolution (mm)	Mean spatial resolution for the five crystals (mm)	Mean spatial resolution for the five crystals (wide-open energy window) (mm)	
20	0.50 ± 0.24	0.55 ± 0.03	0.70 ± 0.13	
25	0.62 ± 0.26	0.67 ± 0.07	1.59 ± 0.06	
30	1.11± 0.42	1.17± 0.07	2.05 ± 0.06	
35	1.37 ± 0.35	1.41 ± 0.13	2.06 ± 0.22	

Efficacité de détection

L'efficacité de détection va dépendre :

- de l'arrangement géométrique des cristaux (maximiser l'angle solide)
- du nombre de cristaux dans la direction radiale

Prototype proposé

38,4 mm 59 mm 32,5 mm

Composé de quatre modules de détection Champ de vue transverse: 60 mm Champ de vue axial: 25 mm

Chaque module est composé:

Une matrice de 32x24 cristaux de LYSO (1,5 x 1,5 x 25 mm³)

24 cristaux → 3 longueurs d'atténuation

Deux Planacons 1024 voies

Description du photodétecteur utilisé

Face anodes

Données constructeur

Fenêtre: Borosilicate Photocathode: Bialkali

Amplification: MCP (25 µm,2x1mm)

Anodes: 32 x 32 (1,4 x 1,4)

Pitch: 1,6 mm

Gain: 6x10⁵ @ 2400 V Temps de monté: 600 ps Largeur du signal: 1,8 ns

Uniformité des anodes: 1:1,5

Développement d'une connectique

Résultats préliminaires (1 voie)

Seuil de déclenchement: > 4pe @ 2200 V Temps de montée: (608±107) ps

Electronique de lecture

En résumé...

Résolution volumétrique: 1 µl Fenêtre de coïncidence: < 2 ns Efficacité de détection: 18 %

Talon d'Achille: Champ de vue axial

Acquisition en mode continu...

...permet d'augmenter artificiellement le champ de vue axial

Cristal

3	Scintillateurs	Densité (g/cm³)	Rendement (ph/511keV)	Décroissance (ns)	μ @511 keV (cm ⁻¹)
	Nal:Tl LSO:Ce	3,67 7,40	19400 ~ 13000	230 ~ 47	0,34 0,88
_	LaBr ₃ :Ce	5,29	32000	16	0,45
	LaCl ₃ :Ce	3,86	23000	25	0,36
	LYSO:Ce	7,11	17300	41	0,83

Problèmes: hygroscopique disponible pour section> 4 mm

Photodétecteur

Candidats potentiels

SiPM

	cout/voie (euros)
Planacon	5
SiPM	100
APD	80
PM64voies	40

Perspective ou fiction?

Champ de vue axial: 100 mm Résolution volumétrique: 1 µl Efficacité de détection: 50 %

Champ de vue axial: 200 mm Diamètre: 30 cm 64 modules, 49152 cristaux Résolution volumétrique: 1 µl Efficacité de détection: 39 %

Cluster de compétences autour de l'Imagerie Moléculaire

Recherche fondamentale en Biologie

Développement/Production d'isotopes de radiopharmaceutiques, d'agents de contraste

Hôtellerie animale

Développement d'instruments dédiés Plateforme d'imagerie multimodale Traitement du signal/image Analyse des données

Diagnostic

Examen clinique Imagerie médicale

Thérapie

Radiothérapie (externe, interne, métabolique)
Hadronthérapie
La chimiothérapie (ciblée)
Chirurgie

Compréhension du phénomène

Radiobiologie: interaction rayonnement / cellule Imagerie in vitro Imagerie cellulaire Imagerie in vivo

