— *De la Physique aux détecteurs*

Instruments et Méthodes pour la lutte contre le cancer

David Brasse

Institut Pluridisciplinaire Hubert Curien UMR 7178, UDS, CNRS-IN2P3

Contact: david.brasse@iphc.cnrs.fr Fréjus, 2010

2004: volonté de coordination

Création d'un Groupement De Recherche à la demande de la direction de l'IN2P3 regroupant les équipes de recherche d'une dizaine de laboratoires de l'IN2P3

Thème principal

Développement de nouvelles approches méthodologiques pour l'Imagerie Biomédicale dans le domaine de l'Instrumentation ou de la Modélisation (GDR MI2B)

Premier constat

Les thématiques couvertes par le GDR souffraient d'une absence de projet fédérateur, en comparaison des autres thématiques de l'IN2P3

- -l'imagerie en médecine (diagnostic et thérapie),
- -l'imagerie en biologie (métabolisme et pharmacologie),
- -la dosimétrie.

Actions

- renforcer l'action fédératrice du GDR en facilitant les synergies entre laboratoires
- faciliter les échanges entre les équipes de recherche de l'IN2P3
- favoriser l'ouverture vers des partenaires des Sciences du Vivant

Des thèmes ont pris une place de plus en plus importante. En particulier l'utilisation des rayonnements ionisants sous diverses modalités pour le traitement du cancer est un exemple, avec ARRONAX, AIFIRA, ARCHADE, ETOILE...

Le 24 mars 2003, le Président de la République présente le Plan cancer

Objectifs: réduire de 20% la mortalité sur 5 ans Moyens: 70 mesures, 600 M€

L'une des mesures: mieux structurer la recherche cancérologique en France

- 7 cancéropôles en 2003
- Création de l'INCa en 2005

2008, rapport de la Cour des Comptes

le plan cancer a constitué un cadre cohérent et que ses objectifs ont été largement atteints 1/3 des mesures pleinement concrétisées, 1/3 modérément et le dernier tiers peu/pas mis en œuvre

Le cancer reste aujourd'hui la première cause de mortalité en France avec 145 000 décès en 2008.

Février 2009: Rapport du Pr Jean-Pierre Grünfeld " Recommandations pour le Plan Cancer 2009-2013 : pour un nouvel élan " Une volonté de coordination nationale de la recherche dans le domaine des sciences de la vie et de la santé:

Création de l'Alliance Nationale pour les sciences de la vie et de la santé (AVIESAN)

Regroupe et coordonne les activités du CEA, des CHRU, du CNRS, de la CPU, de l'INRA, de l'INRIA, de l'INSERM et de l'Institut Pasteur <u>http://www.aviesan.fr/</u>

Structuré en 10 Instituts Thématiques multi-organismes dont l'Institut des Technologies pour la Santé (ITS) qui s'inscrit dans une perspective transdisciplinaire et translationelle, reliant en amont des chercheurs et ingénieurs de domaines distincts (mathématiques, physiques, chimie, biologie, informatique, électronique)

IN2P3 participe à l'ITS depuis 2009

le conseil de groupement du GDR a préconisé en juillet 2008, la constitution d'un projet IN2P3 fédérateur dont la thématique est «Instruments et Méthodes Nucléaires pour la lutte contre le Cancer».

Cette thématique implique actuellement 11 des 21 laboratoires de l'IN2P3

CNRS	Enseignant- Chercheurs	ITA	PostDoc CDD	Doct.	Theses 2006-2010
14.5 (19)	15.5 (33)	51.2 (84)	8.5 (9)	32	39

FTE(P. Impliqué)

Actions:

-incubation de projets émergeants (concerne une seule équipe mais avec des partenariats très forts au niveau régional)

➔ Amener ces projets à un stade leur permettant de présenter des dossiers à l'ANR, Europe (FP7)., etc

-Coordination de programmes plus importants

➔ Cohérence des programmes scientifiques

Plan de la présentation

- Introduction
- Imagerie clinique et pré-clinique
- Hadronthérapie
- Applications per-opératoires

Nous sommes curieux de savoir comment nous sommes à l'intérieur...

...mais nous n'aimons pas être meurtris!

#006

HIBISCUS(C) 1997 STEVEN MEYERS

10

Rodolphe von Gombergh

Nous sommes également curieux de comment...

Tomodensitométrie X (scanner X)

Imagerie par résonnance Magnétique Nucléaire (IRM)

I.R.M du genou, ligaments croisés

IRM Coupe transversale du cerveau. Pondération T1

Pondération T1

Imagerie d'émission: principe

Acte I

Traceur caractéristique d'une fonction métabolique ou physiologique

radiotraceur

Marquage de la molécule

Acte III

Injection et étude de la répartition de la molécule marquée

15

Exemple du FDG

Isotopes couramment utilisés

Période Energie Isotope

Emetteurs y

Technétium 99m 140 keV (89%) 6,02 heures Iode 123 27 (71%) 159 keV (83%) 13,2 heures Thallium 201 71 keV (47%)

73 heures

Emetteurs B+

Oxygène 15 1738 keV Carbone 11 960 keV Fluor 18 634 keV 3980 keV Brome 76

2,1 minutes 20,4 minutes 109,8 minutes 972 minutes

Technique d'imagerie associée

Emetteurs γ

Emetteurs β+

Tomographie par émission monophotonique (TEMP) Tomographie par émission de positons (TEP)

Tomographie par émission monophotonique (TEMP)

En 1957, naissance de la 1ère gamma caméra

1998

Image de reins

Image de thyroïde

Image de poumons

En 1976, premiers essais de la tomographie à émission de simples photons par le physicien Ronald Jaszczak.

Tomographie par émission de positons (TEP)

En 1951, détection des tumeurs intracrâniennes (¹³¹I) par F. R. Wrenn.

Besoin d'une meilleure localisation: émetteur de positons (64Cu).

La même année, et de manière indépendante, Sweet and Brownell développèrent une sonde pour localiser des tumeurs cérébrales.

En 1953, Utilisation de l'⁷⁴As par GL Brownell.

En 1963, première utilisation clinique du ⁶⁸Ga par Hal Anger.

En 1976, étude d'un système positon (¹⁸F) par G. Muehllehner.

1973, Robertson 32 détecteurs

1973-74, M Phelps, PETT II

1974, PETT III

1984, arrivée du détecteur bloc

1978, ECAT II, premier tomographe commercial

HR+, SHFJ, CEA

1978, tomographe BGO

1991, premières images corps entier Au FDG

https://www.cpspet.com/our_company/

Voie d'amélioration de l'imagerie TEP

- Reconstruction d'image
- Approche multimodale
 - -TEP/CT

• • •

- TEP/IRM
- Mesure du temps de vol

Tomographie d'émission de positons

P. Brueghel

Anatomie

Fonction

Intérêt de la bimodalité TEP/CT?

Examen FDG: poumon ou os?

University of Pittsburgh

Examen ¹²⁴I: *os ou tissu?*

Memorial Sloan Kettering

morphology metabolism

Intérêt de la bimodalité TEP/IRM ?

Mesure du temps de vol

Philips TruFlight: The solution to better PET imaging

In conventional PET imaging, it's possible only to know that a coincident event has taken place on the line of response, but not the actual location of the event. TruFlight technology uses the actual time difference between the detection of coincident events to more accurately identify the origin of the annihilation. Better identification leads to a quantifiable improvement in image quality.

Mesure du temps de vol

$$c = 30 \ cm.ns^{-1} = 0,3 \ mm.ps^{-1}$$

 $d_{2} = d + \Delta d$ $d_{1} = d - \Delta d$ $d_{2} - d_{1} = 2\Delta d$ $\Delta t_{2} - \Delta t_{1} = \frac{2\Delta d}{c}$

$$\Delta t = 500 \, ps \rightarrow \Delta d = \frac{c\Delta t}{2} = \frac{0.3 \times 500}{2} = 75 mm$$

Réduction de variance

Non-TOF

TOF

Data courtesy of J. Karp, University of Pennsylvania

Possibilité d'amélioration du TOF?

- Amélioration de cristaux
 - rendement lumineux
 - constante de décroissance
- Photodétecteur
 - SiPM, MCP-PMT...
- Electronique
- Alternatives: RPC...

Au niveau des cristaux

Le plus utilisé: LSO (25 ph/keV, 40 ns)

Amélioration possible avec un dopage au Ca

Ca concentration (%)	Light output (photons/MeV)	Decay time (ns)
0.0	30900	43.0
0.1	38800	36.7
0.2	36200	33.3
0.3	32400	31.3
0.4	34800	31.0

Light output and decay time values are the average of multiple samples.

$LaBr_3$ (63 ph/keV, 16 ns)

Amélioration possible avec différent % de Ce

Au niveau des photodétecteurs

Multi-anodes PMTs Dynodes

Si-PMTs Quenched Geiger

MicroChannelPlatePMTs Micro-Pores

QE CE Rise-time TTS (1PE) Pixel size Dark counts Dead time Magnetic field Lifetime IOP PUBLISHINGPHYSICS IN MEDICINE AND BIOLOGYPhys. Med. Biol. 55 (2010) N179–N189doi:10.1088/0031-9155/55/7/N02NOTEOps
Ops
IdamaLaBr3: Ce and SiPMs for time-of-flight PET: achieving
100 ps coincidence resolving timeOps
IdamaRecord à battre !!KG
total charge

Description of the XP85023/A1 Planacon

Metal envelop:	58 × 58 × 13.7 mm ³
Active area:	53 × 53 mm²
Matrix size:	$32 \times 32 \rightarrow 1024$ channels
Anode size:	1.4 × 1.4 mm ²
Pitch:	1.6 mm
Photocathode type:	bialkali
Multiplier stage:	double stack of MCPs
MCP characteristics	: 25 µm pore (L:D = 40:1)

Available without any backside connectors
A dedicated board was developed in our Institute

Multilayer printed circuit board (PCB) with 100 µm via 16 connectors of 64 channels each.

The PCB is mechanically aligned on the Planacon and cold connected with 1024 silver glue pads matching the position of each anode.

High voltage divider:

photocathode-MCPin:1MCPin-MCPout:10MCPout-anode:1

Silver glue pad

Geometrical Center Position of 64 pads

Average pitch: $Px = 1.59 \pm 0.07 \text{ mm} (1.40 - 1.76)$ $Py = 1.60 \pm 0.06 \text{ mm} (1.44 - 1.75)$

Distribution of the charges for one anode pad

Gain Uniformity

Intrinsic Spatial Resolution

Gain Measurement at the Photoelectron Level

Dark Current

42

Correlation Between the Charge and the Amplitude

Timing Resolution

Projet LAPD et création d'un LIA

GLASS-BODY MCP-PMT

Courtesy of Henry Frisch

Applications médicales

Au niveau de l'électronique

- Constant-fraction-discriminator (CFD).
- CFD + additional pulse height correction.
 A slight time-walk as number of photoelectrons corrected by the QTNT + ADC
- Waveform sampling (a'la Gary Varner's design from U. of Hawaii).
 The most powerful timing method.
- Double-threshold timing on both leading and trailing edges.
- Single threshold on both leading and trailing edges.
 The most simple.

400ps/div, 20mV/div

400ps/civ, 20mV/civ

oopsadae, loomW/day

Résumé de la première partie en...

L'imagerie in vivo du petit animal: un défi certain

Mouse

Imagerie Moléculaire

Manchester institute

Tomodensitomètre X

Système IRM

Julich Research center

Système TEMP

Autoradiographie

Systèmes optiques Bioluminescence fluorescence

Imagerie préclinique

A Multimodality Imaging System for Small Animal

µTomodensitomètre X

Imagerie Anatomique Acquisition/reconstruction: $20s \rightarrow 6$ min Résolution spatiale: $150 \rightarrow 50 \ \mu m$

µTomographe à Emission MonoPhotonique

Imagerie fonctionnelle Résolution spatiale: 1 mm Efficacité de détection: 0,009%

µTomographe à Emission de Positons

Imagerie fonctionnelle En cours de développement Résolution spatiale: 1mm Efficacité de détection: >15%

µTDM: présentation

Source X (Hamamatsu, L8601-01) Anode W, μfoyer X (7μm), 20-90 kV, 0 à 250 μA,

Ouverture 39°, Fonctionne en continu→obturateur mécanique

Capteur (Hamamatsu, C7942)

120 x 120 mm², CsI / photodiode 2400 x 2400 pixels, pixel de 50μm 470ms/projection (1, 4, 9 images/s)

Reconstruction:

Analytique: cluster de PCs / carte GPU itératif: carte GPU

Modèle murin du cancer du sein

Moins de tumeurs pour les souris ST3 +/+ mais taux de croissance supérieur

La respiration limite la détection dans la région pulmonaire Etude longitudinale: limiter la dose (48 mGy/acquisition)

> Travaux réalisés en collaboration avec l'IGBMC (MC Rio, C Mathelin) D Brasse et al, International Journal of Cancer, 201Q₀

Étude de l'angiogénèse

Ligature de l'artère fémorale chez le rat Injection d'un produit de contraste

Travaux réalisés en collaboration avec la Faculté de Pharmacie de Strasbourg (N Etienne, A Walter) A Walter et al, J Pharmacol Exp Ther, 2009

Quantification du tissu adipeux

C Habold et al, Int. J. Obes., 2010

Imagerie ex-vivo

Effet du resveratrol sur la densité osseuse Tibia BMD (g/cm³) 1,60 1,55 1,50 b 1,45 1,40 1,35 1,30 Ctrl Susp Resv Resv + Susp suspended resveratrol treated control + suspended

Travaux réalisés en collaboration avec le DEPE C Habold, J. Bone Miner. Metab., 2010

Etude tumorale

Travaux réalisés en collaboration avec la Faculté de Pharmacie de Strasbourg (N Etienne, A Walter)

µTEMP: présentation

Arménie

Protocole d'acquisition CT/SPECT

◊ Injection du radioisotope

Acquisition microCT
 768 projections sur 360°, binning 2x2, 4 projections/s
 3 minutes acquisition/reconstruction

◊ Acquisition microSPECT

Longines Grand Prix de Paris 1888 140 images / s

Hadronthérapie

Maroc

3000 à 5000 patients / an

"lourds"

Benjamin Braunn, LPC

carbone

Quelques notions

quantité moyenne d'énergie déposée Dose = ------ (Gray) masse du volume

(environ 60 Gray pour détruire une tumeur)

La trace d'un ion a une taille comparable à celle de l'ADN

Courbe de survie

Réparation réduite des radio-lésions dues aux rayonnements à haut TEL (Transfert d'Energie Linéique)

RBE = diminue avec la dose

Courbes de survie de cellules de mammifère en irradiation à dose unique d'après E.Hall; Lippincott Co, 1994

Effet oxygène

Le taux de survie dépend du taux d'oxygène dans la cellule

Diminution de l'oxygénation -> diminution des radicaux libres -> diminution des dégâts indirects

Rayons X: les cellules hypoxiques sont radiorésistantes

Cellules rénales humaines T1, ● hypoxie, ○ normoxie; d'après Broerse et Barendsen, IJRB, 13:559, 1967
Les hauts TEL font disparaître l'effet oxygène

Cellules rénales humaines T1, ● hypoxie, ○ normoxie; d'après Broerse et Barendsen, IJRB, 13:559, 1967

Pourquoi ? : plus de dommages directs

Intérêt du pic de Bragg

Distribution de la dose

Longitudinal plane

Proton vs photons

9 X ray beams

1 proton beam

Un faisceau d'ions carbone est caractérisé par:

- Un *pic de Bragg* donc une excellente balistique
- Un TEL qui augmente *en fin de parcours et devient très élevé*
- Des conséquences radiobiologiques:
 - -une efficacité biologique très supérieure aux photons
 - -un faible effet de l'hypoxie
 - -un faible effet du fractionnement

Carbon vs Proton

Balistic

➔ Lower Tail of dose after Bragg Peak for proton

Comparison of dose profiles of protons and carbon

Carbon vs Proton

Points clefs de l'hadronthérapie

- Afin de pouvoir définir le plan de traitement:
 - Connaitre la dose à administrer
 - Prédire et simuler les réactions physiques
 - Section efficace des différents processus
 - Données expérimentales obtenues à GANIL à basses énergies
 - Projet à GSI pour énergies plus hautes
 - Connaitre la distribution dans les tissus
 - Détection d'un signal corrélé à la dose déposée dans un volume
 - Contrôle de la dose en ligne
 - Connaitre les effets biologiques engendrés par la dose déposée
 - Expérience de radiobiologie
 - Définir des modèles biologiques

Contrôle de la dose in situ

Deux méthodes:

- in beam PET
- détection des gammas prompts

Problèmes du in beam PET:

1°) faibles périodes 11-C (20 min), 15-O (2min), 10-C (10s) 2°) faibles activités (~10 KBq) (PET clinique: ~250 MBq) 3°) 10min d'acquisition au minimum pour la statistique 4°) Période biologique (washout dans le sang) TOF pour améliorer le SNR

Contrôle de la dose in situ

Utilisation des gammas issus de la réaction nucléaire le long du faisceau

Projet national gamhadron et projet européen ENVISION

Ions carbone dans le monde

Ions carbone en France

Centre ETOILE: centre national d'hadronthérapie par ions carbone

Projet ARCHADE: centre européen de R&D en hadronthérapie

Coûts des traitements anticancéreux

Islamabad

Pakistan

L'imagerie per-opératoire

Enjeux : Assister le chirurgien dans la détection et l'exérèse précise de tissus radiomarqués

Sonde CarolIres (IPHC)

Fusion des projets de gamma caméra miniaturisée à l'IMNC et à l'IPHC pour renforcer les chances de succès de la valorisation industrielle

 Recherche de la distribition de la radioactivité Avant l'intervention
(γ caméra)

2- Localisation des GS Pendant l'intervention (sonde γ + γ caméra)

3- Vérification de l'extraction de tous les GS Après l'intervention

(y caméra)

Le protocole clinique

La veille de l'intervention

Injection en 4 points périareolaires de **20 MBq** de colloïdes marqués au ^{99m}Tc radiomarqué

Image planaire lymphoscintigraphique

Le jour de l'intervention

Injection en 4 points périaréolaires de bleu de méthylène

Le protocole clinique (2)

Distribution de la profondeur, activité et taille des GS

Mathelin et al, JNM 48 (2007) 623-629

Un contrôle post-opératoire positif

- Patiente de 44 ans
- Cancer canalaire infiltrant de 14 mm QSE SG
- Premier GS bleu (9,6 kBq)
- EE négatif
- Contrôle post-opératoire : GS résiduel
- GS bon bleu (0,5 kBq) massivement métastasé

Mathelin et al, World J Surg Oncol 2007;5:132.

Diagnostic

Examen clinique Imagerie médicale

- Thérapie

Radiothérapie (externe, interne, métabolique) Hadronthérapie La chimiothérapie (ciblée) Chirurgie

- Compréhension du phénomène —

Radiobiologie: interaction rayonnement / cellule Imagerie in vitro Imagerie cellulaire Imagerie in vivo

- BioInformatique

