Nathalie PALANQUE-DELABROUILLE CEA-Saclay

1

- Composition de l'Univers ?
- Son évolution ?
- Phénomènes extrêmes ?

Physique : science qui a pour objet l'étude de la matière et de ses propriétés fondamentales

Physique des particules

infiniment petit des constituents de la matière

Astrophysique

infiniment grand de l'Univers

Astroparticule

science qui a pour objet l'étude de l'Univers à partir des outils de la physique des particules et de l'astrophysique neutrinos ^{ondes} gravitationnelles

protons, novoux de la photons

Voie Lactée en IR lointain

grand nuage de Magellan

Andromède

visible

infrarouge

Univers en multi-longueurs d'onde

Les différentes facettes de la Voie lactée

Decouverte des nyons cosmiques

1901 (voire 1785, Coulomb)

1901

1901

Découverte d'un rayonnement ionisant à la surface de la terre (décharge spontanée des électroscopes)

Air conducteur car ionisé (Faraday) par un rayonnement intense? particules chargées « naturelles » ?

→ radioactivité naturelle des roches (Rutherford)

1909

Mesure en haut de la tour Eiffel (père Théodor Wulf)

en haut

prédiction 0,4 ions / cm³/s

mesure 3,5 ions $/ \text{ cm}^3/\text{s}$

au sol

mesure

6 ions / cm^3/s

1911-1913

Victor Hess à l'assaut du ciel

10 vols en ballon

17 avril 1912

éclipse de soleil → ne vient pas du soleil

1914 Synthèse des mesures de Hess et de HESS : prix Nobel 1936 8 km |Kolhörster pour la découverte des rayons cosmigues 6 km Altitude « Un rayonnement extrêmement intense venant de l'espace pénètre 4 km dans notre atmosphère » (V. Hess) 2 km baptisé « rayons cosmiques » (R. Millikan, 1926) 0 km

Intensité du rayonnement

Détecteurs de coïncidences

Plusieurs particules simultanées ! (au delà de proba d'après taux de fortuits)

Réduction des déclenchements fortuits Particules traversent 1m de Pb $\rightarrow \mu$

Gerbes atmosphériques

1938 Pierre AUGER

Etude des rayons cosmiques les plus énergétiques (plaques de plomb) Simultanéité sur grandes distances (40 cm ... 1 m ... 300 m)

« averses de rayons cosmiques » « grandes gerbes atmosphériques »

énergie maximale : 10¹⁵ eV

2000 énergie maximale : 3 x 10²⁰ eV = 50 J

En résumé

rayons cosmiques = particules chargées

⇒ déflection par les champs magnétiques (galactiques et intergalactiques)

rayons cosmiques = particules chargées

⇒ déflection par les champs magnétiques (galactiques et intergalactiques)

Rayons cosmigues inergie et accélération

Spectre des rayons cosmiques

Spectre en $E^{-\gamma}$ produit par chocs successifs avec petit gain en énergie:

- gain ΔE/E = ξ à chaque collision
 E_n = E₀(1+ξ)ⁿ
- nb de collisions pour atteindre énergie E : $n = \frac{\ln (E/E_0)}{\ln (1+\xi)}$
- probabilité de sortir de région accélératrice à chaque collision : \mathcal{P}_{esc} probabilité de survie après k collisions : $(1 - \mathcal{P}_{esc})^k$
- nb de particules accélérée au delà de énergie E :

$$N(>E) \propto \sum_{k=n}^{\infty} (1 - \mathcal{P}_{esc})^{k} = (1 - \mathcal{P}_{esc})^{n} / \mathcal{P}_{esc} = exp \left[\frac{\ln (E/E_{0})}{\ln (1 + \xi)} \ln(1 - \mathcal{P}_{esc}) \right] / \mathcal{P}_{esc}$$

$$N(>E) \propto \frac{1}{\mathcal{P}_{esc}} \left[\frac{E}{E_{0}} \right]^{-\alpha} \qquad où \quad \alpha = -\frac{\ln(1 - \mathcal{P}_{esc})}{\ln(1 + \xi)} \sim \frac{\mathcal{P}_{esc}}{\xi}$$

$$37$$

1949 : accélération de Fermi

Accélération stochastique de particules sur inhomogénéités magnétiques

Collisions frontales \Rightarrow Gain d'énergie Collisions arrières \Rightarrow Perte d'énergie

Collisions frontales + probables ⇒ Gain d'énergie en moy.

 $\beta = V/c$

 $\gamma^2 = 1/(1-\beta^2)$

- Dans ref du nuage : $E'_1 = \gamma (E_1 - \beta p_{1x})$ $E'_1 = \gamma E_1(1 - \beta \cos\theta_1)$
- Collision élastique dans nuage : $E'_2 = E'_1$
- Dans ref. du laboratoire : $E_2 = \gamma E'_2(1 + \beta \cos\theta'_2)$

ref du laboratoire

$$\theta_1$$

 θ_2
 E_1 $p_1 = E_1/c$

1949 : accélération de Fermi

Accélération stochastique de particules sur inhomogénéités magnétiques

Collisions frontales \Rightarrow Gain d'énergie Collisions arrières \Rightarrow Perte d'énergie

Collisions frontales + probables ⇒ Gain d'énergie en moy.

$$\Delta \mathbf{E}/\mathbf{E} \ \alpha \ \beta^2 \qquad \beta = \mathbf{v}/\mathbf{c} \sim 10^{-4}$$

« Second ordre »

Lent et peu efficace

<u>1970's : accélération de Fermi du premier ordre</u> Accélération par onde de choc

Conservation du nb de particules : $\rho_1 v_1 = \rho_2 v_2$ onde de choc : $\rho_2/\rho_1 = (\gamma+1)/(\gamma-1)$ Fully ionized plasma (\Leftrightarrow gaz idéal) $\gamma = 5/3$ and $v_1/v_2 = 4$

- ⇒ Passage répété de part et d'autre de l'onde de choc
- ⇒ Gain en énergie rapide

 $\Delta E/E \sim 4\beta/3$ (~10⁻¹)

« Premier ordre »

Ondes de choc ? Supernovae !

Reste de supernova

du Crabe

vie brève mort extrêmement violente des étoiles massives

1 SN II / 50 ans dans notre galaxie

faible masse

HESS : première confirmation

F. Aharonian et al., 2004 Nature 432, 75

- ASCA / ROSAT : contours en X (E ~ 1 keV)
- HESS : couleurs en gamma (E ~1 TeV)

coïncidence spatiale → restes de SN = accélérateurs de particules multi TeV

Limitation énergétique

Particule doit rester dans région accélératrice i.e. où champ magnétique B

> $q v \times B = m v^2 / r_L$ $q B = m v / r_L = p / r_L$

Particule ultra-relativiste : $p \sim E/c$ donc $r_L = E / (qBc)$

E augmente \rightarrow r_L devient > que taille R de région accélératrice

Région de taille R :
$$E < E_{max} = ZeBcR$$
 \implies faut grand B et R

Limitation énergétique

Hillas plot

RG mb&.0

10¹⁸

1 Mpc

15

log (size, km)

Energy (eV)

Colliding galaxies

Musters

10²¹

15 Neutron Restes de supernova : 10 log (magnetic field FGWW %h-2 sr-1 GeV-1 E_{max} ~ Z e B R c 12 $\rightarrow E_{max} \sim 10^{15} \text{ eV}$ (genou) E-2.7 10 Rayons cosmiques 10¹⁵ - 10²⁰ eV ! Protons (10²⁰ eV) Protons (10²¹ eV) 10⁻⁸ White dwarf 3 AGN $E_{max} = Z \frac{B}{1 \ \mu G} \frac{R}{1 \ Mpc} 9.3 \ 10^{20} \ eV$ 10⁻¹ Fe (10²⁰ eV) 10⁻²⁰ Crab B_{gal} typique SNR -6 Galactic disk 10⁻²⁶ Voie lactée insuffisante pour rayons les plus énergétiques 10¹² 10¹⁵ 10⁹ 12 3 19 1 au **1** pc

Sources au delà de 10¹⁵ eV

Active Galactic Nuclei

Rayons cosmigues détection

Gerbes atmosphériques

proton de 10¹² eV

proton 10¹⁸ eV

Détecteurs de rayons cosmiques

Uniquement par nuits claires et sans lune

(lumière UV)

Trajectoire à partir de géométrie + timing ou mode dual (mieux)

Energie par largeur de la gerbe

Nb de photo-électrons reçus → nb d'électrons N_e émis selon profondeur X d'atmosphère traversée

Energie par largeur de la gerbe

Nb de photo-électrons reçus → nb d'électrons N_e émis selon profondeur X d'atmosphère traversée

$$E_{em} = 2(MeV / g.cm^{-2}) \int N_e(X) dX$$

 $E_{tot} = E_{em} (1+15\%)$ pour tenir compte de énergie emportée par μ , ν , hadrons.

Trajectoire déterminée à partir des temps d'arrivée du front d'onde sur détecteurs au sol

Energie déterminée à partir des comptages

Ultra High Energy Cosmic Rays

AUGER

Fluorescence de l'air + détecteurs au sol sur 3000 km² de pampa argentine

4 stations de télescopes pour la fluorescence

AUGER

10 ¹⁹ eV	détecteur de surface	détecteur de fluorescence	hybride
Δθ	2°	1°	0,4°
Δ impact	80 m	400 m	35 m
∆ E / E	18%	15%	5%

10 ²⁰ eV	détecteur de surface	détecteur de fluorescence	hybride
Δθ	1°	1°	0,4°
Δ impact	40 m	400 m	30 m
∆E / E	7%	10%	3%

AUGER

Auger Nord ?

- statistique plus grande (super-amas local)
- test de l'isotropie

Auger Sud

- complet
- >1 million d'événements enregistrés
- $E_{max} \sim 2 \ 10^{20} \ eV$

Auger: Mels résultats

AUGER - spectre UHE

Abraham et al., Phys. Rev. Lett. 2008, 101, 061101

AUGER - origine des UHECR

	Number E > 57EeV	Number correlated within 3°	Expected if isotropy
Total sample	27	20	5.6
Excluding galactic plane	21	19	5.0

Premiers indices de correlation des UHECR avec sources astronomiques

Abraham et al., arXiv:0712.2843v2 [astro-ph]

autres messagers...

Astroparticule

Nathalie PALANQUE-DELABROUILLE CEA-Saclay

1

Astronomie multi-messagers

SU

Neutrons

Propagation en ligne droite

mais proviennent surtout

des milieux ténus

 $\tau \sim 15 \text{ mn}$ $d_{max} = 10 \text{ kpc} \text{ à } \text{E} = 10^{18} \text{ eV}$

Propagation quasi infinie Propagation en ligne droite **MESSAGER IDEAL** milieux denses lointains

Neutrinos

Rayons cosmiques (p)

Propagation chaotique (B)

mais ultra haute

énergie
Astronomie multi-messagers

libre parcours moyen d'un $v = \infty$

2 s pour sortir

libre parcours moyen d'un photon = 1 cm

100 000 ans pour sortir

Neutrinos

Propagation quasi infinie Propagation en ligne droite MESSAGER IDEAL milieux denses lointains

Astroparticule

1) Approche multi-messager Rayons cosmiques

- 2) Neutrinos cosmiques
 - Saga solaire
 - Des neutrinos dans l'atmosphère
 - Astronomie neutrinos
- 3) Astronomie gamma Ondes gravitationnelles

ou l'Univers violent...

Découverte du neutron : ⁴₂He + ⁹₄Be → ¹²₆C + n Chadwick (Nobel 1935) (1932)

 Baptême du « neutrino » de Pauli : Interprétation désintégration β par Fermi (1933)

Sources de neutrinos

```
Radioactivité croûte terrestre : 10^7 v / s / m^2
Etre humain : 4000 v / s
Soleil : 10^{38} v / s
Supernova type II : 10^{58} v / s
Gerbes atmosphériques : 100 v / m^2 / s
Big Bang : 300 v / cm^3
Réacteurs et accélérateurs ...
```

Cataclysmes cosmiques ...

Section efficace d'interaction

$$\sigma = 0.7 \ 10^{-38} \times E (GeV) \ cm^2$$
Nb d'interaction par unité de longueur :
N = $\sigma \rho / u$ masse d'un nucléon
densité massique

Libre parcours moyen d = 1/N

$$d_{eau} = \frac{1.66 \times 10^{-27} \text{ kg}}{(10^{-47} \text{ m}^2)(1000 \text{ kg.m}^{-3})} = 2 \ 10^{17} \text{ m} \qquad d_{plomb} = \frac{1.66 \times 10^{-27} \text{ kg}}{(10^{-47} \text{ m}^2)(11400 \text{ kg.m}^{-3})} = 2 \ 10^{16} \text{ m}$$

$$1 \ ann\acute{e}e-lumi\grave{e}re \ lower \ 10^{-47} \text{ m}^2 \qquad 8$$

Rappel historique

« Détection du neutrino libre: une confirmation » Cowan et Reines (Nobel 1995)

- ou : Quel est l'âge du Soleil ?
- ou encore : Quel est l'âge de la Terre ?

• 1859: géologues et biologistes (dont Darwin)

→ t_{Terre}: au moins 300 millions d'années

- 1850: refroidissement de la Terre par transfert radiatif (Lord Kelvin)
 t_{Terre} ~ 100 000 ans
- 2000+: datation d'éléments radioactifs

→ t_{Terre} ~ 4.6 milliards d'années

- ou : Quel est l'âge du Soleil ?
- ou encore : Quel est l'âge de la Terre ?

• 2000+: datation d'éléments radioactifs

t_{Terre} ~ 4.6 milliards d'années

• Source d'énergie du Soleil: Chimique ?

Sur Terre, chaleur reçue F ~ 1400 W/m² d _{Terre-Soleil} = 150.10⁶ km Luminosité L = $4\pi d^2F$ L ~ 3.10^{26} W

- ou : Quel est l'âge du Soleil ?
- ou encore : Quel est l'âge de la Terre ?

• 2000+: datation d'éléments radioactifs

+_{Terre} ~ 4.6 milliards d'années

• Source d'énergie du Soleil: Gravitationnelle ?

E pot. $U = -\int_{0}^{R} \frac{GM(r)dm}{r} = -\frac{3GM^2}{5R}$

Luminosité L = $4\pi d^2 F$ L ~ 3.10²⁶ W

durée de vie: $t_{Soleil} \sim U / L \sim (7.10^{-11})(2.10^{30})^2 / (7.10^8) / 3.10^{26} W$

→ ~10 millions d'années

- ou : Quel est l'âge du Soleil ?
- ou encore : Quel est l'âge de la Terre ?

• 2000+: datation d'éléments radioactifs

t_{Terre} ~ 4.6 milliards d'années

• Source d'énergie du Soleil: Nucléaire ?

En. de liaison par nucléon B ~ 1MeV

Luminosité L = $4\pi d^2 F$ L ~ $3.10^{26} W$

durée de vie: $t_{Soleil} \sim N_p \times B / L \sim 10^{57} \times 1 MeV / 3.10^{26} W$

~10 milliards d'années

Homestake Ray Davis

650 tonnes de C_2Cl_4

1v/jr (10^{18} traversant cuve)

radioactif $\tau_{1/2} \sim 1$ mois

 $^{37}Cl + v_e \rightarrow ^{37}Ar + e^-$

→ « Recherche de v en provenance du Soleil » (1968)

 Expérience temps-réel et directionnelle: (Super) Kamiokande

 $v_e + e^- \rightarrow v_e + e^$ seuil = 6.5 MeV (1986)

 Expérience temps-réel et directionnelle: (Super) Kamiokande
 v_e + e⁻ → v_e + e⁻

seuil = 6.5 MeV (1986)

 Expériences au Gallium (SAGE, GALLEX) ⁷¹Ga + v_e → ⁷¹Ge + e⁻ (seuil = 0.2 MeV) → sensibilité aux v_{pp} (1991-1997)

(exp. radiochimique)

Il manque 40% des v

$$\begin{aligned} |v_{i}(t)\rangle &= |v_{i}(t=0)\rangle e^{i(px-Et)} \text{ propagation état propre} \end{aligned} \begin{vmatrix} |v_{e}\rangle &= \cos\theta |v_{1}\rangle + \sin\theta |v_{2}\rangle \\ |v_{\mu}\rangle &= -\sin\theta |v_{1}\rangle + \cos\theta |v_{2}\rangle \\ E_{i} &= \sqrt{p^{2} + m_{i}^{2}} \approx p + m_{i}^{2}/2E_{i} \approx p + m_{i}^{2}/2E \qquad \text{pour v relativiste (m \ll E)} \\ v(t)\rangle &= e^{i(px-Et)} \Big(\cos\theta |v_{1}\rangle e^{-im_{1}^{2}t/2E} + \sin\theta |v_{2}\rangle e^{-im_{2}^{2}t/2E} \Big) \\ v(t)\rangle &= e^{i(px-Et-(m_{1}^{2}+m_{2}^{2})t/4E)} \Big(\cos\theta |v_{1}\rangle e^{i\delta m^{2}t/4E} + \sin\theta |v_{2}\rangle e^{-i\delta m^{2}t/4E} \Big) \\ \text{où} \quad \delta m^{2} &= m_{2}^{2} - m_{1}^{2} \end{aligned}$$

ightarrow

• Probabilité qu'un v_e émis par le Soleil soit encore un v_e au niveau de la Terre $P_{v_e}(t) = \left| \left\langle v_e | v(t) \right\rangle \right|^2 = \left| \cos^2 \theta \, e^{i \delta m^2 L/4E} + \sin^2 \theta \, e^{-i \delta m^2 L/4E} \right|^2$

•
$$P_{v_e}(t) = |\langle v_e | v(t) \rangle|^2 = |\cos^2 \theta \, e^{i\delta m^2 L/4E} + \sin^2 \theta \, e^{-i\delta m^2 L/4E}|^2$$

 $P_{v_e}(t) = \left| e^{-i\delta m^2 L/4E} + 2i\cos^2 \theta \sin \frac{\delta m^2 L}{4E} \right|^2$
 $Sin^2 \theta = 1 - \cos^2 \theta \sin \frac{\delta m^2 \theta}{\delta \sin x} = (e^{ix} - e^{-ix})/(2i)$
 $P_{v_e}(t) = \left| \cos \frac{\delta m^2 L}{4E} - i\sin \frac{\delta m^2 L}{4E} + 2i\cos^2 \theta \sin \frac{\delta m^2 L}{4E} \right|^2$
 $P_{v_e}(t) = \cos^2 \frac{\delta m^2 L}{4E} + \sin^2 \frac{\delta m^2 L}{4E} \cos^2 2\theta$
 $P_{v_e}(t) = 1 - \sin^2 \frac{\delta m^2 L}{4E} \sin^2 2\theta$
 $P_{v_e}(t) = 1 - \sin^2 \frac{\delta m^2 L}{4E} \sin^2 2\theta$
 $P_{v_e}(t) = 1 - \sin^2 \frac{\delta m^2 L}{4E} \sin^2 2\theta$
 $P_{v_e}(t) = 1 - \sin^2 \frac{\delta m^2 L}{4E} \sin^2 2\theta$
 $P_{v_e}(t) = 1 - \sin^2 \frac{\delta m^2 L}{4E} \sin^2 2\theta$
 $P_{v_e}(t) = 1 - \sin^2 \frac{\delta m^2 L}{4E} \sin^2 2\theta$

Note: $\delta m = 0 \rightarrow pas$ d'oscillation 25

•
$$P_{v_e}(t) = 1 - \sin^2 \frac{\delta m^2 L}{4E} \sin^2 2\theta$$

 $\Rightarrow 1 - \frac{1}{2} \sin^2 2\theta$ en moyenne si
 $L_{\text{Terre-Soleil}} \gg L_{\text{osc}} = 4\pi E/\delta m^2$ (= $4\pi \hbar c E/\delta m^2 c^4$)

• Forte amplification de la réduction de flux par effet MSW dans le Soleil

•
$$P_{v_e}(t) = 1 - \sin^2 \frac{\delta m^2 L}{4E} \sin^2 2\theta$$

 $\Rightarrow 1 - \frac{1}{2} \sin^2 2\theta$ en moyenne si
 $L_{\text{Terre-Soleil}} \gg L_{\text{osc}} = 4\pi E/\delta m^2$ (= $4\pi \hbar c E/\delta m^2 c^4$)

• Forte amplification de la réduction de flux par effet MSW dans le Soleil

(augmentation de la masse effective des v_e quand $\rho_e \rightarrow \infty$ avec pour effet que $v_e \rightarrow v_{\mu}$ en sortie du Soleil)

Neutrinos solaires: énigme résolue

SNO: mille tonnes de $D_2O \implies$ Sensibilité aux différentes saveurs de v

$v_x + e^- \rightarrow v_x + e^-$	Diffusion élastique (DE)
$v_e + d \rightarrow e^- + p + p$	Courant chargé (CC)
$v_x + d \rightarrow v_x + p + n$	Courant neutre (CN)

Radiochimique : CC uniquement sur Cl ou Ga, v_e Cerenkov: DE avec sensibilité aux v_{μ} et v_{τ} (taux v_e = 6x taux v_{μ} ou v_{τ})

18 juin 2001: Flux total (CN) en accord avec modèles solaires Mais 2/3 des v_e du Soleil $\rightarrow v_{\mu}$ ou v_{τ} lorsqu'ils atteignent la Terre

Nobel 2002 (Davis, Koshiba)

2000m sous terre

Neutrinos solaires: énigme résolue

Oscillation neutrinos solaires

 $\delta m_{12}^2 \sim 7.94 \ 10^{-5} \ eV^2$ $\theta_{12} \sim 34^\circ$

Neutrinos atmosphériques

Dépendance angulaire au niveau du détecteur

Détection possible d'oscillations si L_{osc} (= $4\pi\hbar cE/\delta m^2 c^4$) du même ordre de grandeur que diamètre Φ de la Terre

> Note: pour E ~ 1GeV et $\delta m_{12}^2 \sim 7.94 \ 10-5 \ eV^2$, $L_{osc} \gg \Phi_{terre}$ donc condition non remplie pour cas « solaire »

Neutrinos atmosphériques

Oscillations des neutrinos

Oscillation neutrinos solaires

$$\delta m_{12}^2 \sim 7.94 \ 10^{-5} \ eV^2$$

 $\theta_{12} \sim 34^\circ$

Oscillation neutrinos atmosphériques

$$\delta m_{23}^2 \sim 2.1 \ 10^{-3} \ eV^2$$

 $\theta_{23} \sim 45^\circ$

Bilan oscillations des \boldsymbol{v}

Physique des neutrinos

- Mesure masses
- Mesure θ_{13}
- Violation de CP? comparaison P($v_e \rightarrow v_{\mu}$) et P($\overline{v_{\mu}} \rightarrow \overline{v_e}$)

Certaines réponses dans exp. terrestres, mais astro neutrino apporte environnement unique pour sonder les propriétés fondamentales des neutrinos.

Disparition du carburant

- \rightarrow compression du cœur
- \rightarrow T augmente
- → Déclenchement réaction suivante (si masse suffisante pour atteindre la température nécessaire)

En l'absence de réaction nucléaire, pression de dégénérescence quantique

Principe d'exclusion de Pauli:

deux fermions ne peuvent pas se trouver dans le même état

« énergie incompressible » $\epsilon_{\rm F}$ ~ n^{2/3} / m

donc d'abord

pression de dégénérescence due aux électrons

puis pression de dégénérescence due aux neutrons

- Combustion de Si → augmentation masse du cœur de Fe (pression de dégénérescence des e⁻)
 - \rightarrow augmentation densité

Capture électronique: $p + e^- \rightarrow n + v$

Diminution de pression de dégénérescence (ϵ_F) des e⁻

1987A

23 février 1987: ~20 neutrinos en provenance de SN1987A en ∆t=10s dans les détecteurs Kamiokande et IMB

Or
$$E = \gamma mc^2$$
 où $\gamma = \frac{1}{\sqrt{1 - (V/c)^2}}$

donc vitesse V des v d'énergie E : $V = c\sqrt{1 - (mc^2/E)^2}$

et durée t du trajet :
$$t = \frac{d}{V} \approx \frac{d}{c} \left(1 + \frac{1}{2} \left(mc^2 / E \right)^2 \right)$$

Donc contrainte sur m_v à partir de $\Delta T/\Delta E$:

$$\frac{dt}{dE} = \frac{d}{c} \left(\frac{mc^2}{E}\right) \left(\frac{-mc^2}{E^2}\right) = -\frac{1}{E} \frac{d}{c} \left(\frac{mc^2}{E}\right)^2$$

1987A

23 février 1987: ~20 neutrinos en provenance de SN1987A en ∆t=10s dans les détecteurs Kamiokande et IMB

Astronomie neutrinos

Début XXIe siècle:

neutrinos solaires

neutrinos atmosphériques

~20 neutrinos de SN1987A

Astronomie neutrinos

Basse énergie (10 GeV - 1 TeV):
matière noire de milieux denses (concentration de neutralinos & annihilation)
v de supernovae (+ de stat)

evt v_{μ} de 10 TeV

Astronomie des neutrinos

pour aller plus loin: détecteurs 10.000 fois plus massifs que SK !

Très faible section efficace d'interaction des v (bien que croissante avec l'énergie)

> Oscillations donc v_e , v_μ et v_τ en proportion égale au niveau de la Terre

> > Les μ et τ produits peuvent traverser une grande quantité de matière (plusieurs km)

 \Rightarrow La Terre comme détecteur

Effet Cerenkov

analogie sonore

Mur du son Bang supersonique

Effet Cerenkov

Lumière bleue

Detecteurs

Lignes équipées de modules optiques (PMT)

• d _{om-om} :	Seuil en E
•# de OM:	Résolution en E
• d _{inter ligne} :	Volume effective (E max)

Ice Cube 1 km² x 1 km meilleure sensibilité (moins d'absorption)

Antares 0.1 km2 × 400m meilleure résolution angulaire (0.2°)

Intercalibration possible sur 0.6π steradians

Scintillement du télescope :

radioactivité naturelle

bioluminescence!

© DeepSeaPhotography.Com

© DeepSeaPhotography.Com

Status & perspective de astro v

ANTARES, AMANDA: 0,1 km² Preuve de faisabilité des télescopes à v Observation possible des flux diffus de neutrino (AGNs) (limites actuelles de AMANDA au niveau des prédictions les + optimistes) Aucune source ponctuelle à ce jour...

Astro v (sources ponctuelles) requière 1 km³

IceCube: 80 lignes de 1km de long sur ~1 km² Juillet 2009: 40 lignes en fonctionnement (complet en 2011)

KM3: "design study" avec FP7 (réseau KM3Net) Etude conjointe ANTARES, NESTOR, NEMO

Blazars

<u>Low energy emission</u> (X-ray) : Synchrotron emission of e⁻ in jet

<u>High energy emission</u> (γ-ray):
self-compton (electro-magnetic) ?
π⁰ decay (hadronic) ?

High energy sources

- <u>High energy emission (y-ray):</u>
 - self-compton (cleatro-magnetic)?
 - π^0 decay (hadronic) ?

High energy v sources Astroparticule

Nathalie PALANQUE-DELABROUILLE CEA-Saclay

1
Astroparticule

1) Approche multi-messager Rayons cosmiques

2) Neutrinos cosmiques

- Saga solaire
- Des neutrinos dans l'atmosphère
- Astronomie neutrinos

3) Astronomie gamma Ondes gravitationnelles

ou l'Univers violent...

Astronomie des rayons gamma

Etude des accélérateurs cosmiques → protons haute énergie (rayons cosmiques) deviés (B) jusqu'à 10¹⁸ eV
 → neutrinos haute énergie aucune source détectée
 → photons haute énergie (rayons gamma)

- 1952 Prédiction de HE émission en gamma du disque galactique
- 1958 Première détection d'un rayon gamma cosmique (éruption solaire)
- 1968 Détection du disque galactique et de la nébuleuse du Crabe Toujours aucun gamma EXTRA-galactique

EGRET (E > 100 MeV)

Emission diffuse galactique: interaction milieu interstellaire et rayons cosmiques

Sources ponctuelles

- Jets de noyaux actifs de galaxie
- Sources galactiques (pulsars, binaires, restes de supernovae ...)
- Sources non identifiées (170/270)

 \rightarrow observatoire Fermi

Active Galactic Nuclei (AGN)

- AGN : galaxie avec trou noir central de 10⁸ 10⁹ M_o 10% – jets radio (éjection relativiste de plasma)
- 1% blazars (tous les cas d'AGNs dans EGRET !)

Trous noirs

Cas stellaire

- épuisement du combustible nucléaire équilibre gravité ↔ pression quantique des électrons → naine blanche
- disparition des électrons (e + p → n + v) effondrement gravitationnel du cœur équilibre gravité ↔ pression quantique des neutrons → étoile à neutrons (M_{NS} < 0.7 Msun)
- effondrement gravitationnel
 → trou noir

Trous noirs

Approche en mécanique classique du trou noir

 $R_s = 3$ km pour le Soleil

R<R_s : étoile s'effondre en un état de densité d'énergie infinie (Oppenheimer et Snyder, 1939)

Au centre de la Voie lactée

orbites planétaires \rightarrow 4 millions Mo dans rayon < 0.3 u.a. = 44 10⁶ km

 \rightarrow trou noir supermassif !

Trous noirs supermassifs

Au cœur de la plupart (toutes?) les galaxies

Formation de ces trous noirs supermassifs ? forte connexion avec histoire de la formation des galaxies

Au centre de la Voie lactée

Aujourd'hui un trou noir aujourd'hui léthargique, mais il n'y a pas si longtemps...

Plan de la Galaxie (20- 40 keV) avec INTEGRAL

Zoom sur le centre galactique

Variabilité de émission de la source de rayons gamma Sgr B2

2003-2009 INTEGRAL Survey of the GC (20 Ms)

20 - 60 keV range

(Terrier et al. 2010)

 10^4 u.a. = 2 mois lumière

Déplacements supraluminiques !?

Trous noirs

Trous noirs

M87 : des jets de matière

Core of Galaxy NGC 4261

tous les AGNs de EGRET Hubble Space Telescope sont des blazars !

Wide Field / Planetary Camera

Ground-Based Optical/Radio Image

HST Image of a Gas and Dust Disk

Tore de

matière

380 Arc Seconds 88,000 LIGHT-YEARS

Blazars

<u>Emission basse énergie</u> (rayons X) : émission synchrotron des e⁻ du jet VARIABILITÉ taille ~ Γct_{var} (Γ > 10)

Emission haute énergie (rayons γ): - auto-compton (electromagnétique) ? - désintégration π^0 (hadronique) ?

Blazars

<u>Emission haute énergie</u> (rayons γ):
- auto-compton (electromagnétique) ?
- désintégration π⁰ (hadronique) ?

Sources de v

de haute énergie !

Quasars et Microquasars

30

Sursauts Gamma (GRB)

1967 Découverte fortuite par les satellites VELA d'émission spontannée de rayons gamma (16 events), Publication en 1973

Gamma ray bursts (GRB)

1991 Observation avec les satellites C.G.R.O (EGRET, BATSE...) & BeppoSAX

objets les plus brillants de l'univers, émettant surtout à haute E 10⁴⁴ à 10⁴⁷ J ~ 1 M₀c² → émission collimatée ? ∆t de 10ms à quelques secondes

 ΔL (en 5s) = 1.500.000 km = 0.01 u.a.

→ région compacte

2009 (>3000 sursauts) toujours mal compris...

Localisation des sursauts

Xn115res enernin

Le ciel au TeV

2005

vue stéréoscopique

HESS: Relevé du plan galactique

plusieurs dizaines de nouvelles sources

- SNRs, binaires X, pulsars
- certaines sans contrepartie aux autres λ

Astroparticule

1) Approche multi-messager Rayons cosmiques

2) Neutrinos cosmiques

- Saga solaire
- Des neutrinos dans l'atmosphère
- Astronomie neutrinos
- 3) Astronomie gamma Ondes gravitationnelles

ou l'Univers violent...

Gravitation et espace-temps

Un espace-temps courbe (*z* relat. restreinte)

Ondes gravitationnelles

relativité générale \rightarrow ondes gravitationnelles

- prédiction dès 1918
- 2010 : pas une seule détection (pourquoi ?)

Ondes gravitationnelles

Explosion SN dans amas de la Vierge (15 Mpc): h ~ 10^{-21} à 10^{-24}

Système de deux trous noirs (10 Mpc): h ~ 10^{-22} à 10^{-23}

Pour $L_{terre-soleil}$ = 150.10⁶ km: $\delta L \sim 0,15$ nm

Hulse et Taylor

Pulsar 1913+16 découvert en 1974 T = 59 ms précision meilleure que horloges atomiques!

Pulsar du Crabe

Hulse et Taylor

 ΔT = 76.10⁻⁶ s/an, Δa = 3,5 m/an coalescence dans 300.000.000 ans

 \rightarrow Prix Nobel 1993

Détection des ondes gravitationnelles

Donc pour $h = 10^{-21}$ faut détecteur de L = milliers de km

Détection des ondes gravitationnelles

Miroir de recyclage: L = 3 km → L effectif = 3000 km

Virgo (Pise)

Détecteurs terrestres

Sensibilité atteinte par LIGO

Détecteurs terrestres

v > 30 Hz

causalité $\rightarrow L_{MAX}$ (source) = c/v < 10⁴ km

soit taille < taille min d'une naine blanche ~ étoile à neutron ou trou noir

donc limité

- aux astres les plus compacts
- aux phénomènes peu fréquents

pour couvrir

- coalescence de trous-noirs massifs ($10^3 M_{o}$)
- naines blanches
- \rightarrow freq. plus basse
- \rightarrow dans l'espace !

LISA

Conclusion

Approche multi longueur d'onde élargie à multi messagers, particulièrement en astroparticule, pour étude des phénomènes physiques

Photons de haute énergie: indiquent les sources des particules accélérées Protons: propriétés énergétiques et info sur accélérateurs cosmiques Neutrinos: processus à l'origine des émissions des AGNs, des supernovae... Ondes gravitationnelles: mouvement des corps massifs

Etoile massive: explosion en fin de vie

Effondrement du cœur en trou noir

Effondrement non uniforme, création de jets de particules

Interaction des jets et couches externes, accélération des particules

Au centre de la Voie lactée

Le ciel au TeV

Confirmation des restes de SN en tant qu'accélérateurs cosmiques