Nathalie PALANQUE-DELABROUILLE CEA-Saclay

- Composition de l'Univers ?
- Son évolution ?
- Phénomènes extrêmes ?

Physique : science qui a pour objet l'étude de la matière et de ses propriétés fondamentales

Physique des particules

infiniment petit des constituents de la matière

Astrophysique infiniment grand de l'Univers

Astroparticule

photons

science qui a pour objet l'étude de l'Univers à partir des outils de la physique des particules et de l'astrophysique neutrinos

ondes gravitationnelles

particules chargees

- 1) Approche multi-messager Rayons cosmiques
 - Découverte (1912 1938)
 - Expériences actuelles
- 2) Neutrinos cosmiques
 - Saga solaire
 - Neutrinos « haute énergie »
- 3) Astronomie gamma
 Ondes gravitationnelles

ou l'Univers violent...

Observations multi longueurs d'onde

Radio

Infrarouge Visible UV

Gamma

Observations multi longueurs d'onde

 $1 \text{km} \hspace{1cm} 1 \text{m} \hspace{1cm} 1 \text{mm} \hspace{1cm} 0,1 \mu \text{m} \hspace{1cm} 10 \text{nm} \hspace{1cm} 0,01 \text{nm}$

Radio Infrarouge Visible UV X Gamma

Voie Lactée en « visible »

Voie Lactée en IR proche

Voie Lactée en IR lointain

Andromède

visible

infrarouge

Voie Lactée en radio

Voie Lactée en gammas

Univers en multi-longueurs d'onde

Les différentes facettes de la Voie lactée

- 1) Approche multi-messager Rayons cosmiques
 - Découverte (1912 1938)
 - Expériences actuelles
- 2) Neutrinos cosmiques
 - Saga des neutrinos du Soleil
 - Neutrinos « haute énergie »
- 3) Astronomie gamma Ondes gravitationnelles ou l'Univers violent...

1901 (voire 1785, Coulomb)

électroscope chargé

1901 (voire 1785, Coulomb)

électroscope chargé

1901

décharge spontanée!

1901

Découverte d'un rayonnement ionisant à la surface de la terre (décharge spontanée des électroscopes)

Air conducteur car ionisé (Faraday)
par un rayonnement intense?
particules chargées « naturelles » ?

→ radioactivité naturelle des roches (Rutherford)

1909

Mesure en haut de la tour Eiffel (père Théodor Wulf)

en haut

prédiction 0,4 ions / cm³/s

mesure $3.5 \text{ ions } / \text{ cm}^3/\text{s}$

au sol

mesure 6 ions / cm³/s

1911-1913

Victor Hess à l'assaut du ciel

10 vols en ballon

17 avril 1912

éclipse de soleil

→ ne vient pas du soleil

Chargés ou neutres?

Millikan

Les rayons cosmiques sont neutre (rayons gammas). C'est pour cela qu'ils sont si « pénétrants ». Les rayons cosmiques sont chargés. C'est pourquoi ils sont si énergétiques (accélération par champs électro-magnétiques)

Compton

Nobel 1927

Axe

1932:
expédition Compton
autour du globe
(Nouvelle-Zélande
→ Antarctique)

Détecteurs de coincidences

1933 (Rossi)

Réduction des déclenchements fortuits Particules traversent 1m de Pb $\rightarrow \mu$

Plusieurs particules simultanées!
(au delà de proba d'après taux de fortuits)

Gerbes atmosphériques

1938 Pierre *AUG*ER

Etude des rayons cosmiques les plus énergétiques (plaques de plomb) Simultanéité sur grandes distances (40 cm ... 1 m ... 300 m)

« averses de rayons cosmiques » « grandes gerbes atmosphériques »

énergie maximale : 1015 eV

2000

énergie maximale : 3×10^{20} eV = 50 J

Gerbes atmosphériques

En résumé

1912 Découverte des rayons « cosmiques »

1932 Particules chargées

Découverte des gerbes atmosphériques (E = 10¹⁵ eV!)

1946 Première exp.

NON

OUI
(hors système
solaire)

Photons (lumière) = rayons

Rayons cosmiques ≠ rayons

(appelation due à Millikan)

rayons cosmiques = particules chargées

⇒ déflection par les champs magnétiques (galactiques et intergalactiques)

basse énergie

rayons cosmiques = particules chargées

⇒ déflection par les champs magnétiques (galactiques et intergalactiques)

rayons cosmiques = particules chargées

⇒ déflection par les champs magnétiques (galactiques et intergalactiques)

Astronomie » des rayons cosmiques uniquement à haute énergie!

très grande énergie!

Spectre des rayons cosmiques

Spectre des rayons cosmiques

Spectre des rayons cosmiques

Spectre en $E^{-\gamma}$ produit par chocs successifs avec petit gain en énergie:

- gain $\Delta E/E = \xi$ à chaque collision $E_n = E_0(1+\xi)^n$ n collisions
- nb de collisions pour atteindre énergie E : $n = \frac{\ln (E/E_0)}{\ln (1+\xi)}$
- probabilité de sortir de région accélératrice à chaque collision : P_{esc} probabilité de survie après k collisions : (1 P_{esc})^k
- nb de particules accélérée au delà de énergie E :

N(>E)
$$\propto \sum_{k=n}^{\infty} (1 - \mathcal{P}_{esc})^k = (1 - \mathcal{P}_{esc})^n / \mathcal{P}_{esc} = exp \left[\frac{\ln (E/E_0)}{\ln (1+\xi)} \ln (1 - \mathcal{P}_{esc}) \right] / \mathcal{P}_{esc}$$

$$N(>E) \propto \frac{1}{\mathcal{P}_{esc}} \left[\frac{E}{E_0} \right]^{-\alpha}$$
où $\alpha = -\frac{\ln(1 - \mathcal{P}_{esc})}{\ln(1 + \xi)} \sim \frac{\mathcal{P}_{esc}}{\xi}$

1949 : accélération de Fermi

Accélération stochastique de particules

sur inhomogénéités magnétiques

Collisions frontales \Rightarrow Gain d'énergie Collisions arrières \Rightarrow Perte d'énergie

Collisions frontales + probables ⇒ Gain d'énergie en moy.

Dans ref du nuage :

$$E'_1 = \gamma (E_1 - \beta p_{1x})$$

 $E'_1 = \gamma E_1 (1 - \beta \cos \theta_1)$

$$\beta = V/c$$

$$\gamma^2 = 1/(1-\beta^2)$$

 $\begin{array}{c|c} & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$

ref du laboratoire

- Collision élastique dans nuage : E'₂ = E'₁
- Dans ref. du laboratoire :

$$E_2 = \gamma E'_2(1 + \beta \cos\theta'_2)$$

$$\implies gain \quad \xi = \frac{\Delta E}{E} = \frac{E_2 - E_1}{E_1} = \frac{1 - \beta \cos\theta_1 + \beta \cos\theta_2' - \beta^2 \cos\theta_1 \beta \cos\theta_2'}{1 - \beta^2} - 1$$

$$\text{Or } \frac{dP}{d\cos\theta_1} = \frac{c - V\cos\theta_1}{2c}$$

$$= \int_{0}^{\pi} \cos \theta_{1} \, dP/d\cos \theta_{1} \, d\cos \theta_{1} = -\beta/3$$

$$\frac{d\mathcal{P}}{d\cos\theta'_2} = cst$$

$$<\cos\theta'_2>=0$$

1949 : accélération de Fermi

Accélération stochastique de particules

sur inhomogénéités magnétiques

Collisions frontales \Rightarrow Gain d'énergie Collisions arrières \Rightarrow Perte d'énergie

Collisions frontales + probables ⇒ Gain d'énergie en moy.

$$\Delta$$
E/E α β^2 β = v/c ~ 10^{-4}

« Second ordre »

Lent et peu efficace

1970's : accélération de Fermi du premier ordre Accélération par onde de choc

Conservation du nb de particules :

$$\begin{array}{ll} \rho_1 \ v_1 = \rho_2 \ v_2 \\ \text{onde de choc} : \rho_2/\rho_1 = (\gamma+1)/(\gamma-1) \\ \text{Fully ionized plasma} \ (\Leftrightarrow \text{gaz id\'eal}) \\ \gamma = 5/3 \ \text{and} \ v_1/v_2 = 4 \end{array}$$

- ⇒ Passage répété de part et d'autre de l'onde de choc
- ⇒ Gain en énergie rapide

$$\Delta E/E \sim 4\beta/3 (\sim 10^{-1})$$

« Premier ordre »

Ondes de choc ? Supernovae!

vie brève mort extrêmement violente des étoiles massives

1 SN II / 50 ans dans notre galaxie

HESS: première confirmation

F. Aharonian et al., 2004 Nature 432, 75

F. Aharonian et al., 2005 A&A 437, L7

ASCA / ROSAT : contours en X (E ~ 1 keV)

HESS: couleurs en gamma (E ~1 TeV)

coïncidence spatiale →
restes de SN = accélérateurs
de particules multi TeV

Limitation énergétique

Particule doit rester dans région accélératrice i.e. où champ magnétique B

$$q \times B = m \times v^2 / r_L$$

 $q B = m \times r_L = p / r_L$

Particule ultra-relativiste : p ~ E/c donc $r_L = E / (qBc)$

E augmente -> r_L devient > que taille R de région accélératrice

Région de taille R :

$$E < E_{max} = ZeBcR \implies faut grand B et R$$

Limitation énergétique

Restes de supernova : $\rightarrow E_{max} \sim 10^{15} \text{ eV (genou)}$

Rayons cosmiques $10^{15} - 10^{20}$ eV!

$$E_{\text{max}} = Z \frac{B}{1 \mu G} \frac{R}{1 \text{ Mpc}} 9.3 \ 10^{20} \text{ eV}$$

$$B_{\text{gal}} \text{ typique}$$

Voie lactée insuffisante pour rayons les plus énergétiques

Sources au delà de 10¹⁵ eV

Active Galactic Nuclei

Gerbes atmosphériques

proton 10¹⁸ eV

Détecteurs de rayons cosmiques

Uniquement par nuits claires et sans lune

(lumière UV)

Trajectoire à partir de géométrie + timing ou mode dual (mieux)

Energie par largeur de la gerbe

Nb de photo-électrons reçus

→ nb d'électrons N_e émis
selon profondeur X
d'atmosphère traversée

Energie par largeur de la gerbe

Nb de photo-électrons reçus

→ nb d'électrons N_e émis
selon profondeur X
d'atmosphère traversée

$$E_{em} = 2(MeV/g.cm^{-2}) \int N_e(X) dX$$

 E_{tot} = E_{em} (1+15%) pour tenir compte de énergie emportée par μ , ν , hadrons.

Caméra (PMT)

HiRes (Utah) **Miroirs**

Trajectoire déterminée à partir des temps d'arrivée du front d'onde sur détecteurs au sol

Energie déterminée à partir des comptages

Panneaux solaires comptage de particules **GPS** antenne Photomultiplicateurs 12 tonnes d'eau 59

Ultra High Energy Cosmic Rays

Fluorescence de l'air + détecteurs au sol sur 3000 km² de pampa argentine

4 stations de télescopes pour la fluorescence

événement hybride $\theta = 30^{\circ}$, E ~ 8EeV

10 ¹⁹ eV	détecteur de surface	détecteur de fluorescence	hybride
Δθ	2°	1°	0,4°
Δ impact	80 m	400 m	35 m
Δ E / E	18%	15%	5%

10 ²⁰ eV	détecteur de surface	détecteur de fluorescence	hybride
Δθ	1°	1°	0,4°
Δ impact	40 m	400 m	30 m
ΔE / E	7%	10%	3%

Auger Sud

- complet
- >1 million d'événements enregistrés
- $E_{max} \sim 2 \cdot 10^{20} \text{ eV}$

Auger Nord?

- statistique plus grande (super-amas local)
- test de l'isotropie

La « fin » du spectre

GZK (Greisen Zatsepin Kuzmin) CUT-Off

$$p + \gamma_{CMB} \rightarrow \Delta^{+} \qquad \qquad n + \pi^{+}$$

Processus possible énergétiquement (>5x10¹⁹ eV)

Univers opaque aux rayons cosmiques

Sources avec $E > E_{GZK}$ sont à d<100 Mpc (amas local)

AUGER - spectre UHE

3 lots indépendants

Présence de coupure GZK

spectre plat au delà de 4 10¹⁹ eV exclu à 6 σ

Rayons cosmiques proviennent de sources lointaines

Abraham et al., Phys. Rev. Lett. 2008, 101, ⁶⁸061101

AUGER - origine des UHECR

	Number E > 57EeV	Number correlated within 3°	Expected if isotropy
Total sample	27	20	5.6
Excluding galactic plane	21	19	5.0

Premiers indices de correlation des UHECR avec sources astronomiques

autres messagers...

particules chargées protons, noyaux protons, Confi

Confirmations indépendantes?

Autres preuves, autre approche

Astroparticule

Nathalie PALANQUE-DELABROUILLE CEA-Saclay

Astronomie multi-messagers

Photons

Propagation en ligne droite

Propagation en ligne surtout

proviennent surtout

ténus

mais des milieux ténus

Propagation chaotique (p)
mais ultra haute (B)
énergie

Neutrinos

Neutrons

τ ~ 15 mn d_{max}=10 kpc à E=10¹⁸ eV Propagation quasi infinie
Propagation en ligne droite
MESSAGER IDEAL
milieux denses
lointains

Astronomie multi-messagers

Propagation en ligne droite
Propagation en ligne surtout
mais proviennent ténus
mais des milieux

libre parcours moyen $d'un v = \infty$

2 s pour sortir

libre parcours moyen d'un photon = 1 cm

100 000 ans pour sortir

Neutrinos

Propagation quasi infinie
Propagation en ligne droite
MESSAGER IDEAL
milieux denses
lointains

Astroparticule

1) Approche multi-messager Rayons cosmiques

- 2) Neutrinos cosmiques
 - Saga solaire
 - Des neutrinos dans l'atmosphère
 - Astronomie neutrinos
- 3) Astronomie gamma Ondes gravitationnelles

ou l'Univers violent...

Rappel historique

lacktriangle Mystère de la désintégration β :

énergie variable de e-: non-conservation de E? autre particule? (1930)

• Découverte du neutron : 4_2 He + 9_4 Be \rightarrow ${}^{12}_6$ C + n Chadwick (Nobel 1935) (1932)

Bohr

lacktriangle Baptême du « neutrino » de Pauli : Interprétation désintégration eta par Fermi (1933)

Pauli (« n »)

Sources de neutrinos

```
Radioactivité croûte terrestre : 10^7 \text{ v} / s / \text{m}^2
```

Etre humain: 4000 v / s

Soleil: 10^{38} v / s

Supernova type II : 10^{58} v / s

Gerbes atmosphériques : $100 \text{ v} / \text{m}^2 / \text{s}$

Big Bang : $300 \text{ v} / \text{cm}^3$

Réacteurs et accélérateurs ...

Cataclysmes cosmiques ...

Sources de neutrinos

Section efficace d'interaction

$$\sigma = 0.7 \ 10^{-38} \times E \ (GeV) \ cm^2$$

Nb d'interaction par unité de longueur : $N = \sigma \rho / u$ masse d'un nucléon

densité massique

Libre parcours moyen d = 1/N

$$d_{eau} = \frac{1.66 \times 10^{-27} \text{ kg}}{(10^{-47} \text{ m}^2)(1000 \text{ kg.m}^{-3})} = 2 \cdot 10^{17} \text{ m}$$

$$d_{eau} = \frac{1.66 \times 10^{-27} \text{ kg}}{(10^{-47} \text{ m}^2)(1000 \text{ kg.m}^{-3})} = 2 \cdot 10^{17} \text{ m}$$

$$d_{plomb} = \frac{1.66 \times 10^{-27} \text{ kg}}{(10^{-47} \text{ m}^2)(11400 \text{ kg.m}^{-3})} = 2 \cdot 10^{16} \text{ m}$$

$$1 \text{ année-lumière !}$$

pour E (
$$\beta$$
 decay) ~ 1MeV σ ~ 10⁻⁴⁷ m²

Rappel historique

Très faible interaction : source intense + grand détecteur (1956)

réacteur nucléaire $10^{13} \, \bar{v} \, / \, s \, / \, cm^2$

$$e^+ + e^- \rightarrow \gamma \gamma$$

 $n + {}^{108}Cd \rightarrow {}^{109}Cd^* \rightarrow {}^{109}Cd + \gamma$
 $(\Delta t = 5 \mu s)$

 \sim 3 \vee / heure

« Détection du neutrino libre: une confirmation » Cowan et Reines (Nobel 1995)

ou: Quel est l'âge du Soleil?

ou encore : Quel est l'âge de la Terre ?

1859: géologues et biologistes (dont Darwin)

t_{Terre}: au moins 300 millions d'années

• 1850: refroidissement de la Terre par transfert radiatif (Lord Kelvin)

+_{Terre} ~ 100 000 ans

2000+: datation d'éléments radioactifs

t_{Terre} ~ 4.6 milliards d'années

ou: Quel est l'âge du Soleil?

ou encore : Quel est l'âge de la Terre ?

2000+: datation d'éléments radioactifs

t_{Terre} ~ 4.6 milliards d'années

Source d'énergie du Soleil: Chimique ?

durée de vie: $t_{Soleil} \sim N_p \times E_l / L \sim 10^{57} \times 1 eV / 3.10^{26} W$

~10 000 ans!

ou: Quel est l'âge du Soleil?

ou encore : Quel est l'âge de la Terre ?

2000+: datation d'éléments radioactifs

Source d'énergie du Soleil: Gravitationnelle ?

E pot.
$$U = -\int_{0}^{R} \frac{GM(r)dm}{r} = -\frac{3GM^{2}}{5R}$$

Luminosité L =
$$4\pi d^2F$$

L ~ 3.10^{26} W

durée de vie: $t_{Soleil} \sim U / L \sim (7.10^{-11})(2.10^{30})^2/(7.10^8) / 3.10^{26} W$

~10 millions d'années

ou: Quel est l'âge du Soleil?

ou encore : Quel est l'âge de la Terre ?

2000+: datation d'éléments radioactifs

t_{Terre} ~ 4.6 milliards d'années

• Source d'énergie du Soleil: Nucléaire ?

En. de liaison par nucléon B ~ 1MeV

Luminosité L = $4\pi d^2F$ L ~ $3.10^{26}W$

durée de vie: $t_{Soleil} \sim N_p \times B / L \sim 10^{57} \times 1 MeV / 3.10^{26} W$

~10 milliards d'années

1960: Bahcall

Homestake Ray Davis

650 tonnes de C2Cl4

1v/jr (10^{18} traversant cuve)

$$^{37}Cl + v_e \rightarrow ^{37}Ar + e^{-}$$
 radioactif $\tau_{1/2} \sim 1$ mois

« Recherche de v en provenance du Soleil » (1968)

• Expérience temps-réel et directionnelle: (Super) Kamiokande

```
v_e + e^- \rightarrow v_e + e^-
seuil = 6.5 MeV
(1986)
```


SuperKamiokande

- origine solaire confirmée
- déficit persistant

$$\frac{\text{data}}{\text{modèle}} = 0.4$$

 Expérience temps-réel et directionnelle: (Super) Kamiokande

```
v_e + e^- \rightarrow v_e + e^-
seuil = 6.5 MeV
(1986)
```

• Expériences au Gallium (SAGE, GALLEX) $^{71}Ga + v_e \rightarrow ^{71}Ge + e^-$ (seuil = 0.2 MeV) \rightarrow sensibilité aux v_{pp} (1991-1997)

(exp. radiochimique)

- 3 familles de neutrinos (v_{e} , v_{μ} , v_{τ})
 - LEP (largeur du boson Z)
 - Big Bang Nucleosynthesis

Etats propres (masse) ≠ états propres (saveur)

propagation

détection

$$\begin{aligned} \left| \boldsymbol{v}_{\alpha} \right\rangle &= \sum_{k} V_{\alpha k} \left| \boldsymbol{v}_{k} \right\rangle \\ \left| \boldsymbol{v}_{e} \right\rangle &= \cos \theta \left| \boldsymbol{v}_{1} \right\rangle + \sin \theta \left| \boldsymbol{v}_{2} \right\rangle \\ \left| \boldsymbol{v}_{\mu} \right\rangle &= -\sin \theta \left| \boldsymbol{v}_{1} \right\rangle + \cos \theta \left| \boldsymbol{v}_{2} \right\rangle \end{aligned}$$

cas simplifié à 2 familles $\mathbf{m}_1 \neq \mathbf{m}_2$ 23

 $|v_i(t)\rangle = |v_i(t=0)\rangle e^{i(px-Et)}$ propagation état propre $|v_\mu\rangle = -\sin\theta |v_1\rangle + \cos\theta |v_2\rangle$

$$\begin{vmatrix} v_e \rangle = \cos \theta \, | v_1 \rangle + \sin \theta \, | v_2 \rangle$$
$$\begin{vmatrix} v_\mu \rangle = -\sin \theta \, | v_1 \rangle + \cos \theta \, | v_2 \rangle$$

- $E_i = \sqrt{p^2 + m_i^2} \approx p + m_i^2 / 2E_i \approx p + m_i^2 / 2E$ pour v relativiste (m \ll E)
- $|v(t)\rangle = e^{i(px-Et)} \left(\cos\theta |v_1\rangle e^{-im_1^2t/2E} + \sin\theta |v_2\rangle e^{-im_2^2t/2E} \right)$ $|v(t)\rangle = e^{i\left(px - Et - (m_1^2 + m_2^2)t/4E\right)} \left(\cos\theta |v_1\rangle e^{i\delta m^2 t/4E} + \sin\theta |v_2\rangle e^{-i\delta m^2 t/4E}\right)$

$$\delta m^2 = m_2^2 - m_1^2$$

 $_{ullet}$ Probabilité qu'un v_e émis par le Soleil soit encore un v_e au niveau de la Terre

$$P_{v_e}(t) = \left| \left\langle v_e \middle| v(t) \right\rangle \right|^2 = \left| \cos^2 \theta \, e^{i\delta m^2 L/4E} + \sin^2 \theta \, e^{-i\delta m^2 L/4E} \right|^2$$

$$P_{v_e}(t) = \left| \left\langle v_e \middle| v(t) \right\rangle \right|^2 = \left| \cos^2 \theta \, e^{i\delta m^2 L/4E} + \sin^2 \theta \, e^{-i\delta m^2 L/4E} \right|^2$$

$$P_{v_e}(t) = \left| e^{-i\delta m^2 L/4E} + 2i\cos^2\theta \sin\frac{\delta m^2 L}{4E} \right|^2$$

$$sin^2\theta = 1 - cos^2\theta$$

$$sinx = (e^{ix} - e^{-ix})/(2i)$$

$$P_{v_e}(t) = \left| \cos \frac{\delta m^2 L}{4E} - i \sin \frac{\delta m^2 L}{4E} + 2i \cos^2 \theta \sin \frac{\delta m^2 L}{4E} \right|^2$$

$$P_{v_e}(t) = \cos^2 \frac{\delta m^2 L}{4E} + \sin^2 \frac{\delta m^2 L}{4E} \cos^2 2\theta$$

$$P_{v_e}(t) = 1 - \sin^2 \frac{\delta m^2 L}{4E} \sin^2 2\theta$$

Pontecorvo 1958 : « une piste pour réduire le flux des v solaires... »

•
$$P_{v_e}(t) = 1 - \sin^2 \frac{\delta m^2 L}{4E} \sin^2 2\theta$$

 $\Rightarrow 1 - \frac{1}{2} \sin^2 2\theta$ en moyenne si
 $L_{\text{Terre-Soleil}} \gg L_{\text{osc}} = 4\pi E/\delta m^2$ (= $4\pi \hbar c E/\delta m^2 c^4$)

Forte amplification de la réduction de flux par effet MSW dans le Soleil

(augmentation de la masse effective des v_e quand $\rho_e \rightarrow \infty$ avec pour effet que $v_e \rightarrow v_e$ en sortie du Soleil)

•
$$P_{v_e}(t) = 1 - \sin^2 \frac{\delta m^2 L}{4E} \sin^2 2\theta$$

 $\Rightarrow 1 - \frac{1}{2} \sin^2 2\theta$ en moyenne si
 $L_{\text{Terre-Soleil}} \gg L_{\text{osc}} = 4\pi E/\delta m^2$ (= $4\pi \hbar c E/\delta m^2 c^4$)

Forte amplification de la réduction de flux par effet MSW dans le Soleil

(augmentation de la masse effective des v_e quand $\rho_e \rightarrow \infty$ avec pour effet que $v_e \rightarrow v_u$ en sortie du Soleil)

Faut détecter les différentes saveurs de ν !

Neutrinos solaires: énigme résolue

SNO: mille tonnes de D_2O \Longrightarrow Sensibilité aux différentes saveurs de v

$$v_x + e^- \rightarrow v_x + e^-$$
 Diffusion élastique (DE)
 $v_e + d \rightarrow e^- + p + p$ Courant chargé (CC)
 $v_x + d \rightarrow v_x + p + n$ Courant neutre (CN)

Radiochimique : CC uniquement sur Cl ou Ga, v_e Cerenkov: DE avec sensibilité aux v_μ et v_τ (taux v_e = 6x taux v_μ ou v_τ)

18 juin 2001:

Flux total (CN) en accord avec modèles solaires Mais 2/3 des ν_e du Soleil \to ν_μ ou ν_τ lorsqu'ils atteignent la Terre

Nobel 2002 (Davis, Koshiba)

Neutrinos solaires: énigme résolue

Oscillation neutrinos solaires

$$\delta m_{12}^2 \sim 7.94 \ 10^{-5} \ eV^2$$

 $\theta_{12} \sim 34^\circ$

Neutrinos atmosphériques

Neutrinos atmosphériques

Dépendance angulaire au niveau du détecteur

Détection possible d'oscillations si $L_{\rm osc}$ (= $4\pi\hbar cE/\delta m^2c^4$) du même ordre de grandeur que diamètre Φ de la Terre

Note: pour E ~ 1GeV et δm^2_{12} ~ 7.94 10-5 eV², $L_{\rm osc} \gg \Phi_{\rm terre}$ donc condition non remplie pour cas « solaire »

Neutrinos atmosphériques

Oscillations des neutrinos

Oscillation neutrinos solaires

$$\delta m_{12}^2 \sim 7.94 \ 10^{-5} \ eV^2$$

 $\theta_{12} \sim 34^\circ$

Oscillation neutrinos atmosphériques

$$\delta m_{23}^2 \sim 2.1 \ 10^{-3} \ eV^2$$

 $\theta_{23} \sim 45^\circ$

Bilan oscillations des v

- m_v non nulle (oscillations)
- Contraintes sur δm^2 et non sur m

v atmosphériques
$$\Rightarrow$$
 >1 v a m>0.05 eV (sqrt(δ m²₂₃))

Limites en laboratoire (désintégration β du Tritium): $m(v_e) < \sim 2 eV$

Physique des neutrinos

- Mesure masses
- Mesure θ_{13}
- Violation de CP? comparaison $P(v_e \rightarrow v_\mu)$ et $P(\overline{v_\mu} \rightarrow \overline{v_e})$

Certaines réponses dans exp. terrestres, mais astro neutrino apporte environnement unique pour sonder les propriétés fondamentales des neutrinos.

BIITE MOS of Superingly

Evolution stellaire

Disparition du carburant

- → compression du cœur
- \rightarrow T augmente
- → Déclenchement réaction suivante (si masse suffisante pour atteindre la température nécessaire)

Etoiles de masse intiale > 8 masses solaires

$$4H \rightarrow {}^{4}He$$

$$3\alpha \rightarrow {}^{12}C$$

$$^{12}C + \alpha \rightarrow {}^{16}O$$

$$^{...}$$

$$\rightarrow {}^{28}Si$$

$$\rightarrow {}^{56}Fe$$

En l'absence de réaction nucléaire, pression de dégénérescence quantique

Principe d'exclusion de Pauli:

deux fermions ne peuvent pas se trouver dans le même état

« énergie incompressible » $\epsilon_F \sim n^{2/3} / m$

donc d'abord

pression de dégénérescence due aux électrons

puis pression de dégénérescence due aux neutrons

Combustion de Si

- → augmentation masse du cœur de Fe (pression de dégénérescence des e⁻)
- → augmentation densité

Capture électronique: $p + e^- \rightarrow n + v$

Diminution de pression de dégénérescence (ϵ_F) des e-

1987A

23 février 1987: ~20 neutrinos en provenance de SN1987A en ∆t=10s dans les détecteurs Kamiokande et IMB

Or
$$E = \gamma mc^2$$
 où $\gamma = \frac{1}{\sqrt{1 - (V/c)^2}}$

donc vitesse V des v d'énergie E : $V = c\sqrt{1 - (mc^2/E)^2}$

et durée t du trajet :
$$t = \frac{d}{V} \approx \frac{d}{c} \left(1 + \frac{1}{2} \left(mc^2 / E \right)^2 \right)$$

Donc contrainte sur m_v à partir de $\Delta T/\Delta E$:

$$\frac{dt}{dE} = \frac{d}{c} \left(\frac{mc^2}{E} \right) \left(\frac{-mc^2}{E^2} \right) = -\frac{1}{E} \frac{d}{c} \left(\frac{mc^2}{E} \right)^2$$

1987A

23 février 1987: ~20 neutrinos en provenance de SN1987A en ∆t=10s dans les détecteurs Kamiokande et IMB

Donc contrainte sur \mathbf{m}_{v} à partir de $\Delta T/\Delta E$: $\Delta t = -\frac{\Delta E}{E} \frac{d}{c} \left(\frac{mc^{2}}{E}\right)^{2}$

d = 160.000 a.l. ~ 5 10^{21} m E ~ 20 MeV ~ Δ E Δ t < 12s

 \rightarrow m(v_e) < 13 eV (compétitif en 87)

d galactic \longrightarrow contraintes \sim eV sur $m(v_e, v_\mu \text{ et } v_\tau)$!

Astronomie neutrinos

Début XXIe siècle:

neutrinos solaires

neutrinos atmosphériques

~20 neutrinos de SN1987A

Astronomie neutrinos

Basse énergie (10 GeV - 1 TeV):

- matière noire de milieux denses (concentration de neutralinos & annihilation)
- v de supernovae (+ de stat)

Haute énergie (> 1 TeV):

- v de sources galactiques ou extragalactiques (cf. rayons gamma)
- v aux énergie PeV & EeV!

Astronomie des neutrinos

pour aller plus loin: détecteurs 10.000 fois plus massifs que SK!

Très faible section efficace d'interaction des v (bien que croissante avec l'énergie)

Oscillations donc ν_e , ν_μ et ν_τ en proportion égale au niveau de la Terre

Les μ et τ produits peuvent traverser une grande quantité de matière (plusieurs km)

⇒ La Terre comme détecteur

François Montanet

muon

neutrino muonique

à l'arrêt

progression lente

(effet Doppler)

progression rapide

(onde de choc)

analogie sonore

Mur du son Bang supersonique

Lumière bleue

Detecteurs

Lignes équipées de modules optiques (PMT)

· d_{OM-OM} : Seuil en E

· # de OM: Résolution en E

· d_{inter ligne}: Volume effective

(E max)

Antares

0.1 km2 x 400m meilleure résolution angulaire (0.2°) Ice Cube 1 km² x 1 km meilleure sensibilité (moins d'absorption)

Intercalibration possible sur 0.6π steradians

radioactivité naturelle

Status & perspective de astro v

ANTARES, AMANDA: 0,1 km²
Preuve de faisabilité des télescopes à v
Observation possible des flux diffus de neutrino (AGNs)
(limites actuelles de AMANDA au niveau des prédictions les + optimistes)
Aucune source ponctuelle à ce jour...

Astro v (sources ponctuelles) requière 1 km³

IceCube: 80 lignes de 1km de long sur ~1 km²

Juillet 2009: 40 lignes en fonctionnement (complet en 2011)

KM3: "design study" avec FP7 (réseau KM3Net)

Etude conjointe ANTARES, NESTOR, NEMO

Blazars

VARIABILITY Low energy emission (X-ray): Synchrotron emission of e- in jet Size ~ Tct_{var} $(\Gamma > 10)$ High energy emission (y-ray): self-compton (electro-magnetic) ?
π⁰ decay (hadronic) ?

High energy sources

High energy emission (y-ray):

- self-compton (electro-magnetic)?
- π^0 decay (hadronic) ?

High energy v sources

Astroparticule

Nathalie PALANQUE-DELABROUILLE CEA-Saclay

Astroparticule

- 1) Approche multi-messager Rayons cosmiques
- 2) Neutrinos cosmiques
 - Saga solaire
 - Des neutrinos dans l'atmosphère
 - Astronomie neutrinos
- 3) Astronomie gamma Ondes gravitationnelles

ou l'Univers violent...

Astronomie des rayons gamma

Etude des accélérateurs cosmiques

- → protons haute énergie (rayons cosmiques) deviés (B) jusqu'à 10¹⁸ eV
- → neutrinos haute énergie aucune source détectée
- → photons haute énergie (rayons gamma)

1952 Prédiction de HE émission en gamma du disque galactique

1958 Première détection d'un rayon gamma cosmique (éruption solaire)

1968 Détection du disque galactique et de la nébuleuse du Crabe

Toujours aucun gamma EXTRA-galactique

EGRET (E > 100 MeV)

Emission diffuse galactique: interaction milieu interstellaire et rayons cosmiques

Sources ponctuelles

- Jets de noyaux actifs de galaxie
- Sources galactiques (pulsars, binaires, restes de supernovae ...)
- Sources non identifiées (170/270)
 - → observatoire Fermi

Active Galactic Nuclei (AGN)

AGN: galaxie avec trou noir central de 10⁸ - 10⁹ M_o
10% - jets radio (éjection relativiste de plasma)
1% - blazars (tous les cas d'AGNs dans EGRET!)

Trous noirs

Cas stellaire

- épuisement du combustible nucléaire
 équilibre gravité ←> pression quantique des électrons
 → naine blanche
- disparition des électrons (e + p \rightarrow n + ν) effondrement gravitationnel du cœur équilibre gravité \longleftrightarrow pression quantique des neutrons \rightarrow étoile à neutrons (M_{NS} < 0.7 Msun)
- effondrement gravitationnel
 - → trou noir

Trous noirs

Approche en mécanique classique du trou noir

Rien (pas même la lumière) ne peut s'échapper

$$E_T = E_G + K < 0$$

$$-\frac{GMm}{r} + \frac{1}{2}mv^2 < 0$$

$$-\frac{2GM}{r} + c^2 < 0$$

$$r < \frac{2GM}{c^2}$$

 $r < \frac{2GM}{c^2}$ rayon de Schwarzschild R_s

 $R_s = 3$ km pour le Soleil

R<R_s: étoile s'effondre en un état de densité d'énergie infinie

(Oppenheimer et Snyder, 1939)

horizon

Au centre de la Voie lactée

orbites planétaires \rightarrow 4 millions Mo dans rayon < 0.3 u.a. = 44 10 6 km

→ trou noir supermassif!

Trous noirs supermassifs

Au cœur de la plupart (toutes?) les galaxies

Formation de ces trous noirs supermassifs? forte connexion avec histoire de la formation des galaxies

Au centre de la Voie lactée

Aujourd'hui un trou noir aujourd'hui léthargique, mais il n'y a pas si longtemps...

Plan de la Galaxie (20- 40 keV) avec INTEGRAL

Variabilité de émission de la source de rayons gamma Sgr B2

2003-2009 INTEGRAL Survey of the GC (20 Ms)

20 - 60 keV range

(Terrier et al. 2010)

SWITE III BYR S

Déplacements supraluminiques !?

10⁴ u.a. = 2 mois lumière

Déplacements supraluminiques !?

Emission du 1er photon en A, puis du 2nd en B

 $AB = \beta c \Delta t_e$

 $AC = \beta c \Delta t_e \cos \theta$

Lors de émission du 2^{nd} photon, le 1^{er} est en D $AD = c\Delta t_e$

> Différence entre les temps d'arrivée: $t_2 - t_1 = DC / c = \Delta t_e (1 - \beta \cos \theta)$

Séparation en projection sur le ciel: $CB = \beta c \Delta t_e \sin \theta$

Vitesse apparente $\beta_{app} = CB/(t_2-t_1) = \beta \sin\theta / (1 - \beta \cos\theta)$

Déplacements supraluminiques !?

Déplacement supraluminique APPARENT

Uniquement dans certaines configurations $(\theta \text{ petit}, \beta \text{ grand})$

Trous noirs

Trous noirs

M87 : des jets de matière

Core of Galaxy NGC 4261

sont des blazars!

tous les AGNs de EGRET Hubble Space Telescope

Wide Field / Planetary Camera

Ground-Based Optical/Radio Image

HST Image of a Gas and Dust Disk

380 Arc Seconds 88,000 LIGHTYEARS

1.7 Arc Seconds 400 LIGHT-YEARS

Markarian 421 : blazar « voisin »

Blazars

Emission basse énergie (rayons X): émission synchrotron des e du jet

VARIABILITÉ taille ~ Tct_{var} $(\Gamma > 10)$

Emission haute énergie (rayons γ):

- auto-compton (electromagnétique) ? désintégration π^0 (hadronique) ?

Blazars

Emission haute énergie (rayons γ):

- auto-compton (electromagnétique)?
- désintégration π^0 (hadronique) ?

Sources de v

de haute énergie!

Quasars et Microquasars

QUASAR

MICROQUASAR

 $R \alpha M_{BH}$

T α M_{BH}^{-1/4}

Mirabel & Rodriguez

Sursauts Gamma (GRB)

1967 Découverte fortuite par les satellites VELA d'émission spontannée de rayons gamma (16 events), Publication en 1973

Gamma ray bursts (GRB)

1991 Observation avec les satellites C.G.R.O (EGRET, BATSE...) & BeppoSAX

objets les plus brillants de l'univers, émettant surtout à haute E 10^{44} à $10^{47}\,\text{J}\sim 1~\text{M}_{\text{o}}\text{c}^2$

- émission collimatée ?

∆t de 10ms à quelques secondes

$$\Delta L$$
 (en 5s) = 1.500.000 km = 0.01 u.a.

- région compacte

--- trous noirs, étoiles à neutrons

2009 (>3000 sursauts) toujours mal compris...

Localisation des sursauts

Long débat, mais

Isotropie

Contreparties optiques

Phénomènes cosmologiques
(z = 0.43 à 6.3)

Contrepartie optique

Xn115 tes enem

Le ciel au TeV

2003

Le ciel au TeV

Détection des gammas de haute énergie par leur émission Cerenkov dans l'atmosphère

$$cos \theta = (c/n) / v = 1^{\circ} (air)$$

Le ciel au TeV

2005

vue stéréoscopique

HESS: Relevé du plan galactique

plusieurs dizaines de nouvelles sources

- SNRs, binaires X, pulsars
- certaines sans contrepartie aux autres $\boldsymbol{\lambda}$

« Horizon » Gamma

coupure GZK

Raison principale
pour absence
de sources
extragalctiques au TeV

Astroparticule

- 1) Approche multi-messager Rayons cosmiques
- 2) Neutrinos cosmiques
 - Saga solaire
 - Des neutrinos dans l'atmosphère
 - Astronomie neutrinos
- 3) Astronomie gamma Ondes gravitationnelles

ou l'Univers violent...

Gravitation et espace-temps

Un espace-temps courbe (* relat. restreinte)

Ondes gravitationnelles

relativité générale → ondes gravitationnelles

- prédiction dès 1918
- 2010 : pas une seule détection (pourquoi?)

Ondes gravitationnelles

Variation de longueur due à onde gravitationnelle $h = \delta L / L$ Longueur totale

Explosion SN dans amas de la Vierge (15 Mpc): $h \sim 10^{-21} \text{ à } 10^{-24}$

Système de deux trous noirs (10 Mpc): $h \sim 10^{-22} \text{ à } 10^{-23}$

Pour $L_{terre-soleil} = 150.10^6 \text{ km}$: $\delta L \sim 0.15 \text{ nm}$

Hulse et Taylor

Pulsar 1913+16 découvert en 1974 T = 59 ms précision meilleure que horloges atomiques!

Hubble - optique (rouge) Chandra - rayons X (bleu)

Pulsar du Crabe

Hulse et Taylor

Pulsar 1913+16 :
perturbation périodique T ~ 8 h
→ compagnon

 ΔT = 76.10⁻⁶ s/an, Δa = 3,5 m/an coalescence dans 300.000.000 ans

Détection des ondes gravitationnelles

Interférométrie

performance actuelle:

 $\delta L \sim 10^{-15} \text{ m}$

Donc pour h = 10⁻²¹ faut détecteur de L = milliers de km

Détection des ondes gravitationnelles

Miroir de recyclage: L = 3 km → L effectif = 3000 km

Virgo (Pise)

Détecteurs terrestres

Sensibilité atteinte par LIGO

Détecteurs terrestres

```
v > 30 Hz
causalité \rightarrow L_{MAX} (source) = c/v < 10^4 km
soit taille < taille min d'une naine blanche
            ~ étoile à neutron ou trou noir
donc limité
         - aux astres les plus compacts
         - aux phénomènes peu fréquents
pour couvrir
         - coalescence de trous-noirs massifs (10<sup>3</sup> M<sub>o</sub>)
         - naines blanches
→ freq. plus basse
→ dans l'espace!
```

LISA

Conclusion

Approche multi longueur d'onde élargie à multi messagers, particulièrement en astroparticule, pour étude des phénomènes physiques

Photons de haute énergie: indiquent les sources des particules accélérées

Protons: propriétés énergétiques et info sur accélérateurs cosmiques

Neutrinos: processus à l'origine des émissions des AGNs, des supernovae...

Ondes gravitationnelles: mouvement des corps massifs

Etoile massive: explosion en fin de vie

Effondrement non uniforme, création de jets de particules

Effondrement du cœur en trou noir

Interaction des jets et couches externes, accélération des particules

Trous noirs

Au centre de la Voie lactée

Le ciel au TeV

Confirmation des restes de SN en tant qu'accélérateurs cosmiques