Nathalie PALANQUE-DELABROUILLE CEA-Saclay

1

- Composition de l'Univers ?
- Son évolution ?
- Phénomènes extrêmes ?

Physique : science qui a pour objet l'étude de la matière et de ses propriétés fondamentales

Physique des particules

infiniment petit des constituents de la matière

Astrophysique

infiniment grand de l'Univers

Astroparticule

science qui a pour objet l'étude de l'Univers à partir des outils de la physique des particules et de l'astrophysique neutrinos ^{ondes} gravitationnelles

protons, novoux de la photons

- 1) Approche multi-messager Rayons cosmiques

2) Neutrinos (cosmiques ou pas)

- Saga solaire
- Des neutrinos dans l'atmosphère
- Neutrinos et supernovae
- 3) Approche multi-messager Astronomie neutrino Ondes gravitationnelles ou l'Univers violent...

Andromède

visible

infrarouge

Univers en multi-longueurs d'onde

Les différentes facettes de la Voie lactée

- 1) Approche multi-messager Rayons cosmiques

2) Neutrinos (cosmiques ou pas)

- Saga solaire
- Des neutrinos dans l'atmosphère
- Neutrinos et supernovae
- 3) Approche multi-messager Astronomie neutrino Ondes gravitationnelles ou l'Univers violent...

Decouverte des nyons cosmiques

1901 (voire 1785, Coulomb)

1901

1901

Découverte d'un rayonnement ionisant à la surface de la terre (décharge spontanée des électroscopes)

Air conducteur car ionisé (Faraday) par un rayonnement intense? particules chargées « naturelles » ?

→ radioactivité naturelle des roches (Rutherford)

1909

Mesure en haut de la tour Eiffel (père Théodor Wulf)

en haut

prédiction 0,4 ions / cm³/s

mesure 3,5 ions / cm³/s

au sol

mesure

6 ions / cm^3/s

1911-1913

Victor Hess à l'assaut du ciel

10 vols en ballon

17 avril 1912

éclipse de soleil → ne vient pas du soleil

1914 Synthèse des mesures de Hess et de HESS : prix Nobel 1936 8 km |Kolhörster pour la découverte des rayons cosmigues 6 km Altitude « Un rayonnement extrêmement intense venant de l'espace pénètre 4 km dans notre atmosphère » (V. Hess) 2 km baptisé « rayons cosmiques » (R. Millikan, 1926) 0 km

Intensité du rayonnement

Détecteurs de coïncidences

Plusieurs particules simultanées ! (au delà de proba d'après taux de fortuits)

Réduction des déclenchements fortuits Particules traversent 1m de Pb $\rightarrow \mu$

Gerbes atmosphériques

1938 Pierre AUGER

Etude des rayons cosmiques les plus énergétiques (plaques de plomb) Simultanéité sur grandes distances (40 cm ... 1 m ... 300 m)

« averses de rayons cosmiques » « grandes gerbes atmosphériques »

énergie maximale : 10¹⁵ eV

2000 énergie maximale : 3 x 10²⁰ eV = 50 J

Gerbes atmosphériques

proton de 10¹² eV

En résumé

rayons cosmiques = particules chargées

⇒ déflection par les champs magnétiques (galactiques et intergalactiques)

rayons cosmiques = particules chargées

⇒ déflection par les champs magnétiques (galactiques et intergalactiques)

Rayons cosmigues inergie et accélération

Spectre des rayons cosmiques

Spectre en $E^{-\gamma}$ produit par chocs successifs avec petit gain en énergie:

- gain $\Delta E/E = \xi$ à chaque collision n collisions $E_n = E_0(1+\xi)^n$
- nb de collisions pour atteindre énergie E : $n = \frac{\ln (E/E_0)}{\ln (1+\xi)}$
- probabilité de sortir de région accélératrice à chaque collision : \mathcal{P}_{esc} probabilité de survie après k collisions : $(1 - \mathcal{P}_{esc})^k$
- nb de particules accélérée au delà de énergie E :

$$N(>E) \propto \sum_{k=n}^{\infty} (1 - \mathcal{P}_{esc})^{k} = (1 - \mathcal{P}_{esc})^{n} / \mathcal{P}_{esc} = exp \left[\frac{\ln (E/E_{0})}{\ln (1 + \xi)} \ln(1 - \mathcal{P}_{esc}) \right] / \mathcal{P}_{esc}$$

$$N(>E) \propto \frac{1}{\mathcal{P}_{esc}} \left[\frac{E}{E_{0}} \right]^{-\alpha} \qquad où \quad \alpha = -\frac{\ln(1 - \mathcal{P}_{esc})}{\ln(1 + \xi)} \sim \frac{\mathcal{P}_{esc}}{\xi}$$

$$38$$

1949 : accélération de Fermi

Accélération stochastique de particules sur inhomogénéités magnétiques

Collisions frontales \Rightarrow Gain d'énergie Collisions arrières \Rightarrow Perte d'énergie

Collisions frontales + probables ⇒ Gain d'énergie en moy.

 $\beta = V/c$

 $\gamma^2 = 1/(1-\beta^2)$

- Dans ref du nuage : $E'_1 = \gamma (E_1 - \beta p_{1x}c)$ $E'_1 = \gamma E_1(1 - \beta cos\theta_1)$
- Collision élastique dans nuage : $E'_2 = E'_1$
- Dans ref. du laboratoire : $E_2 = \gamma E'_2(1 + \beta \cos\theta'_2)$

ref du laboratoire

$$\theta_1$$

 θ_2
 E_1 $p_1 = E_1/c$

$$\Rightarrow gain \ \xi = \frac{\Delta E}{E} = \frac{E_2 - E_1}{E_1} = \frac{1 - \beta \cos\theta_1 + \beta \cos\theta_2 - \beta \cos\theta_1 \beta \cos\theta_2}{1 - \beta^2} - 1$$

• Or $\frac{d\mathcal{P}}{d\cos\theta_1} = \frac{c - V\cos\theta_1}{2c}$
 $\leq \cos\theta_1 >$
 $\leq \cos\theta_1 >$
 $= \int_0^{\pi} \cos\theta_1 \ d\mathcal{P}/d\cos\theta_1 \ d\cos\theta_1 = -\beta/3$
 $dcos\theta_1 + \beta \cos\theta_2 - \beta \cos\theta_1 \beta \cos\theta_1 - \beta \cos\theta_2 - 1$
 $\frac{d\mathcal{P}}{1 - \beta^2} = cst$
 $\leq \cos\theta_2 > = 0$
 $(\beta << 1)$
 ≤ 0

1949 : accélération de Fermi

Accélération stochastique de particules sur inhomogénéités magnétiques

Collisions frontales \Rightarrow Gain d'énergie Collisions arrières \Rightarrow Perte d'énergie

Collisions frontales + probables ⇒ Gain d'énergie en moy.

$$\Delta E/E \alpha \beta^2 \qquad \beta = v/c \sim 10^{-4}$$

« Second ordre »

Lent et peu efficace

<u>1970's : accélération de Fermi du premier ordre</u> Accélération par onde de choc

Conservation du nb de particules : $\rho_1 v_1 = \rho_2 v_2$ onde de choc : $\rho_2/\rho_1 = (\gamma+1)/(\gamma-1)$ Plasma entièrement ionisé(\Leftrightarrow gaz idéal)

 $\gamma = 5/3 \text{ et } v_1/v_2 = 4$

Passage répété de part et d'autre de l'onde de choc $(\cos\theta_1) = -2/3$ et $(\cos\theta'_2) = 2/3$

⇒ Gain en énergie rapide $\Delta E/E \sim 4\beta/3$ (~10⁻¹)

« Premier ordre »

1 SN II / 50 ans dans notre galaxie

HESS : première confirmation

F. Aharonian et al., 2004 Nature 432, 75

- ASCA / ROSAT : contours en X (E ~ 1 keV)
- HESS : couleurs en gamma (E ~1 TeV)

coïncidence spatiale → restes de SN = accélérateurs de particules multi TeV

Limitation énergétique

Particule doit rester dans région accélératrice i.e. où champ magnétique B

> $q v \times B = m v^2 / r_L$ $q B = m v / r_L = p / r_L$

Particule ultra-relativiste : $p \sim E/c$ donc $r_L = E / (qBc)$

E augmente \rightarrow r_L devient > que taille R de région accélératrice

Région de taille R :
$$E < E_{max} = ZeBcR$$
 \longrightarrow faut grand B et R

Limitation énergétique

Hillas plot

RG mb&.0

10¹⁸

1 Mpc

15

log (size, km)

Energy (eV)

Colliding galaxies

Musters

10²¹

15 Neutron Restes de supernova : 10 log (magnetic field FGWW %h-2 sr-1 GeV-1 E_{max} ~ Z e B R c 12 $\rightarrow E_{max} \sim 10^{15} \text{ eV}$ (genou) E-2.7 10 Rayons cosmiques 10¹⁵ - 10²⁰ eV ! Protons (10²⁰ eV) Protons (10²¹ eV) 10⁻⁸ White dwarf 3 AGN $E_{max} = Z \frac{B}{1 \ \mu G} \frac{R}{1 \ Mpc} 9.3 \ 10^{20} \ eV$ 10⁻¹ Fe (10²⁰ eV) 10⁻²⁰ Crab B_{gal} typique SNR -6 Galactic disk 10⁻²⁶ Voie lactée insuffisante pour rayons les plus énergétiques 10¹² 10¹⁵ 10⁹ 12 3 19 1 au **1** pc

Sources au delà de 10¹⁵ eV

Active Galactic Nuclei

Rayons cosmigues détection

proton 10¹⁸ eV

Détecteurs de rayons cosmiques

Uniquement par nuits claires et sans lune

(lumière UV)

Trajectoire à partir de géométrie + timing ou mode dual (mieux)

Energie par largeur de la gerbe

Nb de photo-électrons reçus → nb d'électrons N_e émis selon profondeur X d'atmosphère traversée

Energie par largeur de la gerbe

Nb de photo-électrons reçus → nb d'électrons N_e émis selon profondeur X d'atmosphère traversée

$$E_{em} = 2(MeV / g.cm^{-2}) \int N_e(X) dX$$

 $E_{tot} = E_{em} (1+15\%)$ pour tenir compte de énergie emportée par μ , ν , hadrons.

Trajectoire déterminée à partir des temps d'arrivée du front d'onde sur détecteurs au sol

Energie déterminée à partir des comptages

Ultra High Energy Cosmic Rays

AUGER

>1 million d'événements enregistrés
- E_{max} ~ 2 10²⁰ eV

AUGER

Fluorescence de l'air + détecteurs au sol sur 3000 km² de pampa argentine

4 stations de télescopes pour la fluorescence

AUGER

10 ¹⁹ eV	détecteur de surface	détecteur de fluorescence	hybride
Δθ	2°	1°	0,4°
Δ impact	80 m	400 m	35 m
∆ E / E	18%	15%	5%

10 ²⁰ eV	détecteur de surface	détecteur de fluorescence	hybride
Δθ	1°	1°	0,4°
Δ impact	40 m	400 m	30 m
∆E / E	7%	10%	3%

Auger: Mels résultats

AUGER - spectre UHE

Abraham et al., Phys. Rev. Lett. 2008, 101, 061101

AUGER - origine des UHECR

	Number E > 57EeV	Number correlated within 3°	Expected if isotropy
Total sample	27	20	5.6
Excluding galactic plane	21	19	5.0

Abraham et al., arXiv:0712.2843v2 [astro-ph]

Premiers indices de correlation des UHECR avec sources astronomiques

... mais non confirmés ...

autres messagers...

particules chargées protons, noyaux

Confirmations indépendantes?

photons de haute énergie

autres messagers...

