La cosmologie observationnelle dans l'IN2P3 (et l'IRFU, et ailleurs)

O. Perdereau

Ecole IN2P3 "De la physique au détecteur" - Bénodet 2014

Préambule

Plan

- Introduction
 - Le "modèle standard"
 - Les "trois piliers" du Big-Bang
 - Univers et Relativité
 - Histoire(s) de l'univers
 - Inflation ?
- Recherche(s) de matière(s) noire(s) Motivations
 - Lentilles gravitationnelles (EUCLID)

 - Recherches de WIMPS (Edelweiss, Antares,...) Microlentilles gravitationnelles (EROS)
- Supernovæ de type la
 - Introduction
 - Intérêt cosmologique
 - Energie noire
 - Projets :SN factory, CFHLS, SNAP/JDEM/ WFIRST
- Le rayonnement de fond cosmologique (ou CMB) et les grandes structures

Cosmologie

- Pourquoi des anisotropies?
- Planck (HFI)
- Etude(s) des grandes structures (BAO)
- Conclusions
- Sources
- Annexes Autour de la métrique
- Naine blanche
- polarisation du CMB
- Divers

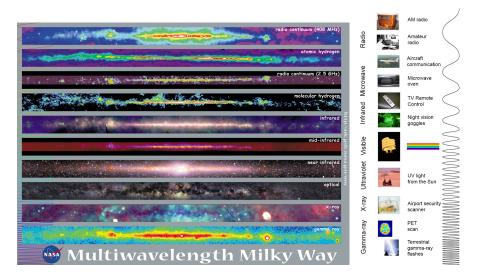
Qu'est-ce que la cosmologie ?

La cosmologie

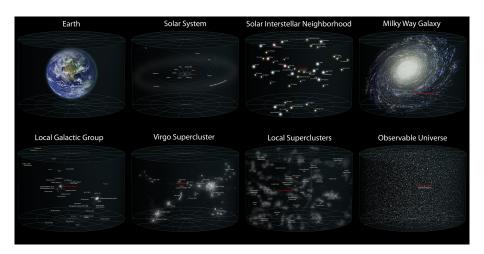
d'après www.francophonie.hachette-livre.fr

n. f. Partie de l'astronomie qui étudie la structure et l'évolution de l'Univers considéré comme un tout.

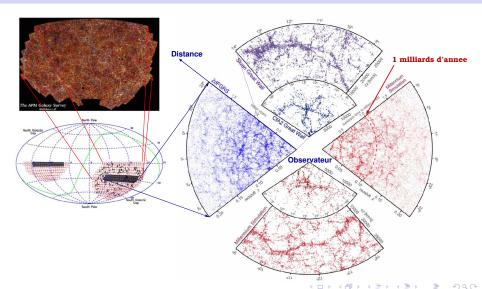
"Les concepts relativistes et les progrès de la physique des particules font évoluer la cosmologie."



Remarques


- Messager = lumière (photons)
- Différentes longueurs d'onde ⇒ différentes sources (à des distances différentes)
- c (vitesse de la lumière) est finie
 ⇒ en général "loin" ⇔ "vieux"
- Distance \rightarrow année-lumière (1 al = 9500 Milliards de km) Distances "cosmologiques" en Giga-a.l. i.e. en 10^9 a.l.
- Luminosité apparente $\propto 1/(\text{distance})^2$ \Rightarrow faible luminosité \simeq loin
- si luminosité intrinsèque (absolue) connue :
 luminosité apparente ⇔ distance

Différents visages de l'Univers



l'Univers à grande échelle

⇒ à grande échelle, l'uniformité et l'homogénéité semblent apparaître

Cartes de l'univers (observation vs simulation) : point de vue d'un observateur non privilégié

Cosmologie

Si l'univers avait un an

Selon la théorie du Big Bang, notre Univers a environ quinze milliards d'années. Une échelle de temps difficile à appréhender sauf si l'on imagine que l'Univers n'a qu'un an....

Naissance du système solaire

28 décembre

24 décembre

Quant à l'homme, toute son histoire se déroulerait

dans la seule soirée du 31 décembre

23h 59' 50"

Début de la civilisation égyptienne

23h 59° 56"

Naissance du Christ

minuit

Début du XX^{ème} siècle

Le modèle du Big-Bang

- Les trois piliers du big-bang
- Relativité Générale
- Histoire de l'Univers
- Inflation

Trois observations:

- "Récession" des galaxies lointaines (Univers en expansion)
 - ▶ Les galaxies lointaines s"'éloignent" de nous
 - ▶ Plus elles sont loin, plus elles s"'éloignent" vite
 - ▶ ⇒ dilatation globale de l'Univers

Trois observations:

- "Récession" des galaxies lointaines (Univers en expansion)
 - Les galaxies lointaines s"'éloignent" de nous
 - ▶ Plus elles sont loin, plus elles s"'éloignent" vite
 - → dilatation globale de l'Univers
- Abondances primordiales des éléments légers
 - ▶ Helium, Deuterium (...) présents dans les objets les plus vieux (≈20-25% d'Helium)
 - comment se sont-ils formés ?
 - ⇒ fusion thermonucléaire de l'Hydrogène dans une phase primordiale dense et chaude

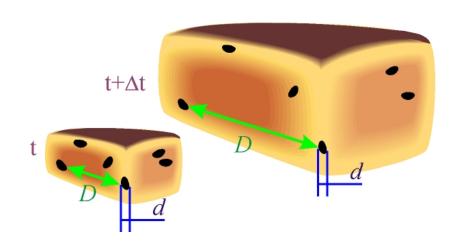
Trois observations:

- "Récession" des galaxies lointaines (Univers en expansion)
 - Les galaxies lointaines s"'éloignent" de nous
 - ▶ Plus elles sont loin, plus elles s"'éloignent" vite
 - → dilatation globale de l'Univers
- Abondances primordiales des éléments légers
 - ▶ Helium, Deuterium (...) présents dans les objets les plus vieux (≈20-25% d'Helium)
 - comment se sont-ils formés ?
 - ⇒ fusion thermonucléaire de l'Hydrogène dans une phase primordiale dense et chaude
- 3 Rayonnement de fond (Fond Diffus Cosmologique, CMB...)
 - Rayonnement isotrope (micro-onde radio / IR lointain) de "corps noir"
 - ▶ image de l'univers "jeune" (300000 ans)
 - signature d'un état dense, chaud et homogène

Trois observations:

- "Récession" des galaxies lointaines (Univers en expansion)
 - Les galaxies lointaines s"'éloignent" de nous
 - Plus elles sont loin, plus elles s"'éloignent" vite
 - → dilatation globale de l'Univers
- Abondances primordiales des éléments légers
 - ▶ Helium, Deuterium (...) présents dans les objets les plus vieux (≈20-25% d'Helium)
 - comment se sont-ils formés ?
 - ⇒ fusion thermonucléaire de l'Hydrogène dans une phase primordiale dense et chaude
- 3 Rayonnement de fond (Fond Diffus Cosmologique, CMB...)
 - Rayonnement isotrope (micro-onde radio / IR lointain) de "corps noir"
 - ▶ image de l'univers "jeune" (300000 ans)
 - signature d'un état dense, chaud et homogène

⇒ II y a eu une "explosion" ? ...

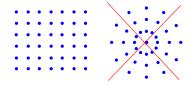


Le Big Bang



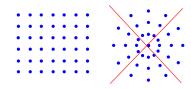
Quoi, c'est ça le Big-Bang? (S. Harris)

Une dilatation d'échelle



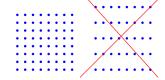
Une dilatation d'échelle (2D)

Principes de base


L'univers est homogène

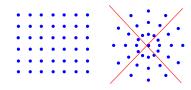
Même "aspect" en n'importe quel point. Ex. : distribution spatiale des galaxies

Principes de base


L'univers est homogène

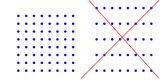
Même "aspect" en n'importe quel point.

Ex. : distribution spatiale des galaxies


2 L'univers est isotrope

Même "aspect" dans toutes les directions Ex.: sources distantes, température du CMB

Principes de base


L'univers est homogène

Même "aspect" en n'importe quel point.

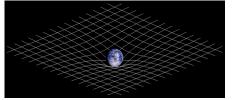
Ex. : distribution spatiale des galaxies

L'univers est isotrope

Même "aspect" dans toutes les directions

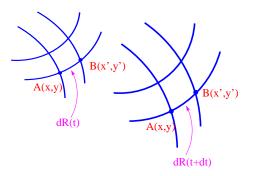
Ex.: sources distantes, température du CMB

- 6 L'univers est en expansion
- $igoplus (nous sommes là <math>\Rightarrow$ "principe" anthropique)


1+2 = "Principe cosmologique" - Einstein

Cadre général

Recette pour un bon univers :


- **1** Relativité générale (Einstein ~ 1917) :
 - description géométrique de l'univers ("métrique")
 - équations d'évolution (dites "d'Einstein")

- ② Thermodynamique & Mécanique quantique (+Physique Nucléaire et des Particules) → comportement des composants ("équation d'état")
- 3 ... cuire au four (le temps de résoudre les équations ?)

Géométrie & facteur d'échelle

métrique = système de coordonnées lié à l'expansion (⇒ "recette" pour calculer les distances : longueurs de vol des photons)


```
R(t) := Facteur d'échelle
d := distance comobile (conservée ds l'expansion)
dR(t) := distance propre ("usuelle" i.e. vue par la lumière)
Variations de R(t) \leftrightarrow expansion
```

Conséquence (1) : loi de Hubble

Localement : géométrie euclidienne (habituelle) distance propre entre deux "observateurs" D=dR(t) Expansion : $t \to t + \Delta t \Rightarrow R(t) \to R(t + \Delta t)$ $\Rightarrow \Delta D=d(R(t+\Delta t)-R(t))$

$$\frac{\Delta D}{\Delta t} = \frac{R(t + \Delta t) - R(t)}{\Delta t} d$$

Si Δt est (infiniment) petit ($\Delta t = dt \rightarrow 0$)

$$v = \frac{dD}{dt} = d\dot{R} = \frac{\dot{R}}{R}D = HD$$

"constante" de Hubble locale : $H(t) = \frac{\dot{R}}{R}(t) = \dot{a}(t)$ Où a = facteur d'échelle relatif / maintenant : $a = R(t)/R_0$

NB : H(t)= "constante" de Hubble mais fonction du temps on mesure H_0 i.e. valeur actuelle

Conséquence(2): "redshift" cosmologique

La distance comobile (d) reste constante \Rightarrow

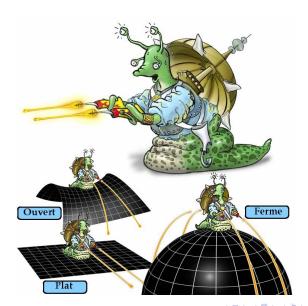
$$d = \frac{D(t_1)}{R(t_1)} = \frac{D(t_2)}{R(t_2)} = cste$$

Conséquence :

une source à $t=t_1$ émet des photons à une longueur d'onde $\lambda(t_1)$ \rightarrow ils sont observés à $t = t_2$ avec

$$\lambda(t2) = \lambda(t_1) \frac{R(t_2)}{R(t_1)}$$

On appelle redshit (décalage vers le rouge) cosmologique :


$$z = \frac{\Delta \lambda}{\lambda} = \frac{R(t_2)}{R(t_1)} - 1$$

z mesure la taille relative de l'univers

z=1: univers deux fois plus petit!

Géométrie(s) de l'univers

Géométries possibles de l'univers

3 familles d'espaces homogènes & isotropes (indexées par k) A 2 dimensions spatiales (+ le temps) :

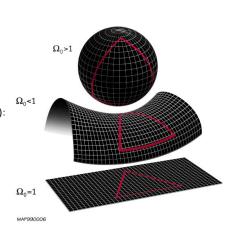
- Plan (k = 0)
- Sphère (k = 1): courbure positive i.e. \sum (angles d'un triangle) $\geq 180^{\circ}$
- Plan hyperbolique (k = -1) "selle de cheval", courbure négative

géométrie locale sur ces surfaces ↔ structure globale

Mêmes catégories à 3 dimensions spatiales

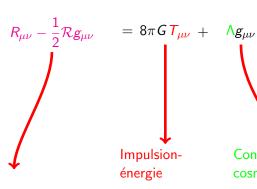
Densité critique

Relativité Générale


⇔ Description géometrique de la Gravitation Lien (quantitatif) entre

- géométrie (et son évolution) (macroscopique)
- densité(s) d'énergie(s) (microscopique)

Un paramètre cosmo important (parmi ~ 10): densité totale d'énergie $\Omega_0 = \frac{\rho_0}{\rho_{critique}}$


$$\Omega_0 = 1 \Leftrightarrow Univers "plat" (euclidien)$$

$$\Leftrightarrow \rho_0 = \rho_{critique} \sim 10^{-29} \text{ g.cm}^{-3}$$

 $\sim 1 - 5 m_{proton} \text{ m}^{-3}$

L'équation fondamentale de la RG

ou équation d'Einstein :

tenseur d'Einstein

fonction de la métrique $g_{\mu\nu}$

distance : $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$

généralisation de $d^2 = x^2 + y^2 + z^2$

L'équation de Friedman

Dans le cas d'un univers homogène et isotrope (et avec la métrique FLRW) \Rightarrow équation d'évolution de R(t) (non linéaire)

$$H^{2}(t) + \frac{kc^{2}}{R_{0}^{2}} \frac{1}{a^{2}(t)} = 8\pi G \frac{\rho(t)}{3} + \frac{\Lambda}{3}$$

$$a(t) = rac{R(t)}{R(t_0)}$$
 $H(t) = rac{da/dt(t)}{a(t)}$

En posant :

$$\Omega(t) = rac{8\pi G
ho(t)}{3H^2(t)} = rac{
ho(t)}{
ho_{critique}} \; \; ; \; \; \Omega_{\Lambda}(t) = rac{\Lambda}{3H^2(t)} \; \; ; \; \; \Omega_k(t) = rac{-kc^2}{R_0^2 H^2(t) a^2(t)}$$
 $\Omega(t) \; + \; \Omega_{\Lambda}(t) \; + \; \Omega_k(t) \; = \; 1$

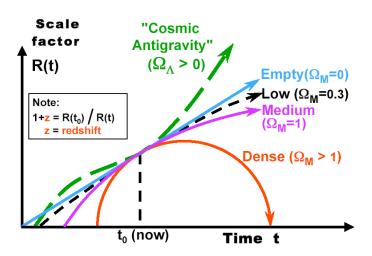
◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

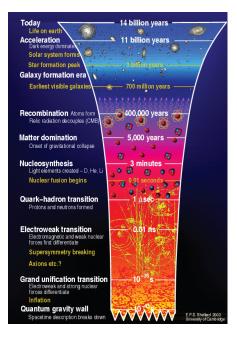
Equation d'état

Matière "normale" (non relativiste - basses énergies & température)
 : "dilution" par l'expansion

$$\rho_m \propto R^{-3}$$

 "Rayonnement" (photons, particules de haute énergie / température): "dilution" par l'expansion + redshift


$$\rho_r \propto R^{-4}$$


 Densité d'énergie du "vide" (!) i.e. Λ ou "énergie noire" : pas affecté par l'expansion (si Λ seul : expansion exponentielle)

$$\rho_{\text{vac}} = \text{cste}$$

Hypothèse(s) sur les constituants \Leftrightarrow Variations de R(t)

Evolution(s) du facteur d'échelle

- (5) formation des structures (galaxies, étoiles, ...) par la gravitation
 - "Libération" des photons = découplage (à \sim 3-400000 ans) → émission du CMB
- Nucléosynthèse (BBN, de 3 à 30 mn) \rightarrow éléments légers
- (2) expansion "lente": apparition de quarks, leptons (electrons) puis nucléons (p.n)
- (1) inflation
- état initial (??)

Cosmologie

Problèmes du modèle du Big-Bang "classique"

- Platitude : eq. de Friedman quand $R \to 0$: le terme en ρ (radiation) domine $\Rightarrow \Omega \to 1$ $\Omega_{tot} \sim .01-1$ "maintenant" $\Rightarrow \Omega_{tot} \sim 1 \pm 10^{-16}$ pendant la BBN
- Horizon : CMB très uniforme sur des régions spatiales non causales
- Formation des structures : Quelle est leur origine (cf le dernier cours) ?
- Scories: Les extensions au MS de la physique des particules ⇒ existences de monopoles mgn, gravitinos (particules très exotiques) pas observées
- Antimatière? : Pas d'antimatière observée ...

Une (des) réponse à (presque) toutes ces questions : l'inflation

L'inflation

Période (brève) d'expansion **exponentielle** de l'univers primordial Origine : une "constante cosmologique" domine - brièvement - l'evolution de l'univers \Rightarrow expansion exponentielle en $\sim 10^{-32}$ s, le facteur d'échelle augmente de $\sim 10^{80}$

- "dilution" des scories
- ullet Expansion de l'horizon o plus de pb
- $\Rightarrow \Omega$ exponentiellement proche de $1 \Rightarrow$ platitude OK
- fluctuations quantiques ⇒ anisotropies spatiales == "graines" des (grandes) structures

"cste(s) cosmologique(s)" "naturelle(s)" peuvent être générées par une transition de phase d'un champ scalaire associée aux GUT / supercordes / ??

Quelques signatures possibles (grandes structures, CMB)

Bilan d'étape

- Avec la R.G. + hypothèse d'isotropie & homogènéité
- + hypothèse de l'inflation
- → construction d'un modèle dit ACDM qui rend compte de manière concordante de ~ toutes les observations à grande échelle
- version minimale (géom. euclidienne): 6 paramètres : H_0 (taux d'expansion) ; Ω_m (densité totale de matière) ; Ω_b (densité de matière relativiste) ; A_s , n_s (paramètres du spectre des anisotropies primordiales voir partie CMB)
- + extensions possibles : neutrinos massifs, "famille" supplémentaire, courbure, ondes gravitationnelles primordiales, ...
- ⇒ mesurer ces paramètres
- Mais aussi :
 - ▶ qu'est-ce qui se cache dans les paramètres (matière noire, ∧,..) ?
 - ▶ le modèle minimal suffit-il ?
 - ▶ a-t-on des indications d'une extension (ou +) ?
 - y a-t-il des failles ?!

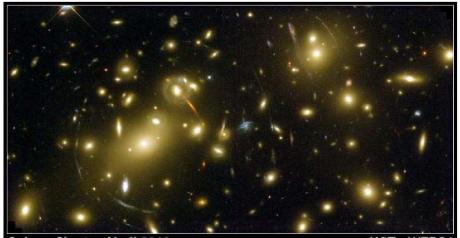
Matière(s) noire(s)

- Motivations
- Lentilles gravitationnelles
- Matière noire non-baryonnique
 - Recherche(s) directe(s) (WIMPS)
 - Recherche(s) indirecte(s)
- Matière noire baryonnique

Motivations

- Amas de galaxies (dynamique, émission X, effet S-Z sur le CMB, lentilles gravitationnelles)
- Anisotropies du CMB
- $\Rightarrow \Omega_m \sim 0.25$ (densité de la matière)
 - Nucléosynthèse primordiale
 - Anisotropies du CMB
 - . . .
- $\Rightarrow \Omega_b \sim 0.05$ (densité baryonnique cad p,n) Pour la matière "visible" (rayonnements) : $\Omega_\star \sim 0.001$ Deux problèmes de "masse cachée" !?

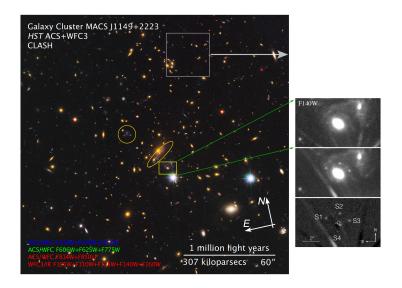
$$\Omega_{\star} \leftarrow ? \rightarrow \Omega_{b} \leftarrow ? \rightarrow \Omega_{m}$$



F. Zwicky

- un physicien chez les astronomes !
- obtient la construction d'un instrument "grand champ" (tel. de Schmidt)
- ullet ightarrow pour chercher des phénomène rares !
- avec W. Baade 1934 : "hypohèse triple" :
 - SN = explosions d'étoiles , utiles pour mesurer les distances
 - 2 transitions vers des étoiles a neutrons
 - sources de rayons cosmiques
- vitesses des galaxies ds l'amas de Coma : inexpliquables sans matière "noire"
- ~ 1937 discussions autour de l'effet de lentille gravitationnelle entre étoiles → + facile à détecter entre galaxies/amas de galaxies (... première détection en 1974)

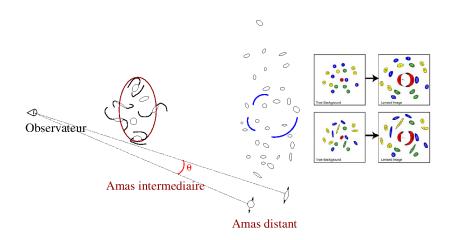
Lentilles gravitationnelles (1)


Galaxy Cluster Abell 2218

NASA, A. Fruchter and the ERO Team (STScI) • STScI-PRC00-08

HST • WFPC2

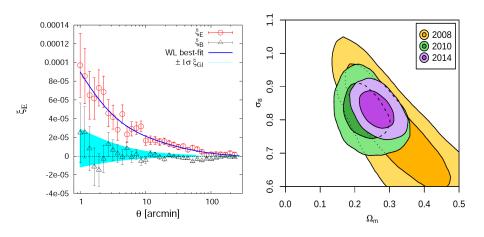
Analyse des déformations (arcs) \Rightarrow distribution de masse en avant-plan


Lentilles gravitationnelles (2)

3-10 Nov. 2014 : 4 "images" d'une SN dans une des 3 images d'une galaxie d'arrière plan

Cosmologie

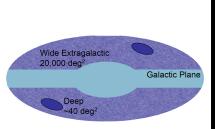
Weak lensing

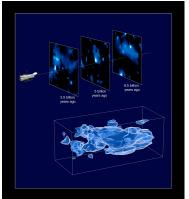


Statistique des allongements (formes) \leftrightarrow répartition de masse \Rightarrow contrainte sur σ_8,Ω_m

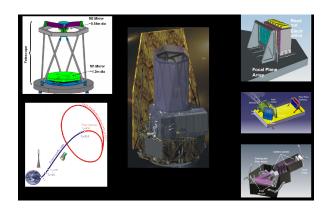
Etudes des arcs ightarrow masse totale ightarrow Ω_m

Contraintes extraites du WL



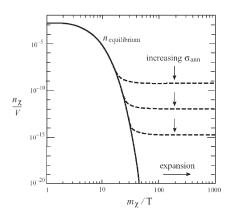

Y. Mellier astro-ph/0206245; Heymans et al astro-ph/0411324 Fu et al (CFHLS) arXiv:0712.0884; Mantz et al arXiv1407:4516

 σ_8 : paramètre de la distribution de la matière (rms de $\delta
ho/
ho$ ds cube de 8Mpc)


(un) futur pour le WL : EUCLID

Mission ESA (+NASA) de classe M du pgme 'Cosmic Vision' (2015-2025) - lancement 2020 Telescope (1.2m) + imageurs visible+IR (\sim 0.5deg² chacun) + spectro IR + observatoires au sol (600Mpix visible, 100Mpix IR , 850 Gb / j)

(un) futur pour le WL : EUCLID


Mission ESA (+NASA) de classe M du pgme 'Cosmic Vision' (2015-2025) - lancement 2020

Telescope (1.2m) + imageurs visible+IR (\sim 0.5deg² chacun) + spectro IR + observatoires au sol

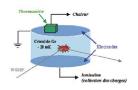
(600Mpix visible, 100Mpix IR, 850 Gb / j)

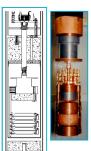
Le miracle des WIMPS

- univers primordial : équilibre thermique $\chi \overline{\chi} \leftrightarrow \gamma \gamma$
- nombre de particules : solution eq. Boltzman
- Iors de l'expansion : T \ ⇒ libre parcours moyen \ →
- quand libre parcours moyen ≥ taille de l'univers ⇒ "gel" : abondance figée
- pour masses et cstes de couplages \sim int. faible : $\Omega_{\rm Y} = .01 1$!
- bcp de candidats pour χ (e.g. neutralino SUSY) : recherche complémentaire de LHC/ILC

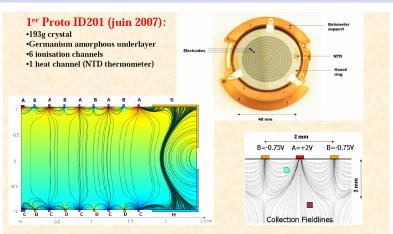

Detections?

- $\Omega_{DM} \sim 0.2 \Rightarrow \rho_{local} \sim 0.3 0.5 \text{ GeV/cm}^3$
- Directe: interaction élastique $\chi + N \rightarrow \chi + N$ $\sigma \approx \sigma_{faible} \Rightarrow \text{rare } (1 \text{ evt/t/an})!$ bdf: radioactivité, rayonnements cosmiques croisement de signatures
 - Nombreuses expériences & techniques (cibles)
- Indirecte: annihilations de WIMP dans Terre/Soleil/Galaxie(s) → signatures possibles dans les détecteurs de rayons cosmiques (Antares, Fermi, AMS, HESS, ...)

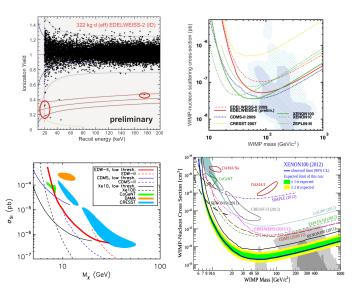

bdf: sources astro!


Signaux des WIMPs

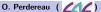
Edelweiss I et II


- n entrants (\Rightarrow blindage(s))
- ²¹⁰Pb (radioactif)
- $\bullet \Rightarrow \text{evts "de}$ surface" (0.3 evt/kg/j)

Nouveaux détecteurs (Edelweiss 2)



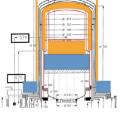
- -Identification des événements de surface par utilisation des voies ionisation
- Application de champs électriques verticaux dans le volume et horizontaux en surface
- Toute collecte sur B ou D signe un evt de surface

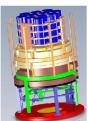

A. Juillard (CSNSM) - IAP 2008

Résultats (petite sélection)

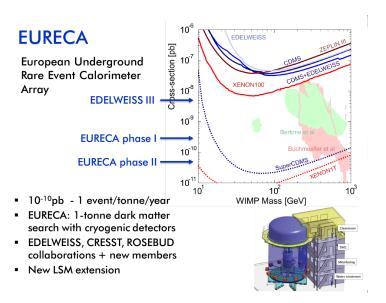
Domaine très concurentiel ; futur → programme d'extension du LSSM (EUREKA)

Edelweis III


EDELWEISS III

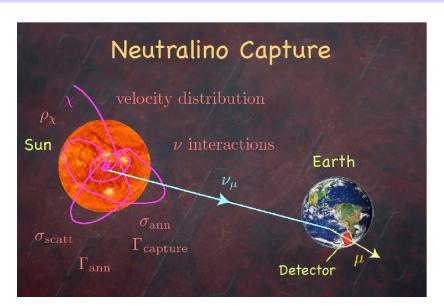

Increase detector mass Decrease background

- Search for dark matter to 5×10-9pb
- 40 FID-800 detectors installed 2012
- New Kapton cabling, connectors
- New cold electronics
- New cryostat design
- New internal PE shield
- New copper thermal shield



45 / 167

EURECA


Detection indirecte

Par collisions élastiques \rightarrow WIMPS freinés \Rightarrow accumulation aux centres de la Terre, du Soleil, des galaxies WIMP Majorana \Rightarrow annihilations $\chi\chi\to p\overline{p}/q\overline{q}/e\overline{e}/\gamma\gamma/...$ Signatures :

- ν_{μ} : (Terre, Soleil, galaxie?) \rightarrow Antares, IceCube
- γ : raie ou flux en excès / sources (compliqué!) \rightarrow HESS (CTA), Fermi, ...
- antiparticules ds rayons cosmiques : (distinction primaire/secondaire ?) \rightarrow AMS

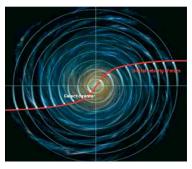
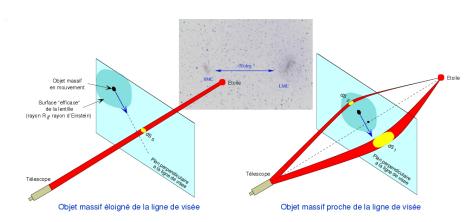

approche complémentaire (et nécessaire) de la détection directe quelques annonces de signaux ... mais "contamination" astrophysique !

Schéma (Soleil)

Matière (noire) baryonique

Existence : BBN, CMB, ... courbes de rotation des galaxies spirale (e.g. la notre!) \Rightarrow existence de halos *galactiques* sombres



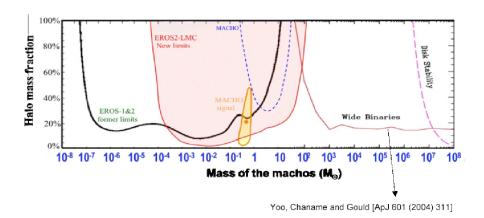
Gravitation
$$\rightarrow v_{rot}^2(r) = \frac{GM(\leq r)}{r}$$

 $v(r) = cste \Rightarrow M(\leq r) = \frac{rv^2}{G} \propto r$
 $\rightarrow \exists$ matière cachée (baryonique?)

Peu de formes possibles :

- nuages moléculaires (froids)
- objets compacts sombres (MACHOs)

L'effet de microlentille



image(s) non résolue (séparation $\lesssim 3~10^{-6}\,\mathrm{deg}$) mais lentille mobile \Rightarrow variation temporelle de flux \star dans le LMC : lentille ds halo : Proba $\sim 10^{-6}\,\mathrm{an^{-1}}$

Cosmologie

◆ロ → ◆部 → ◆き → ◆き → りへで

Contraintes d'EROS-II (IN2P3/IRFU/INSU)

P. Tisserand Hanoi 2004

⇒ Plus beaucoup de place pour les MACHOs!

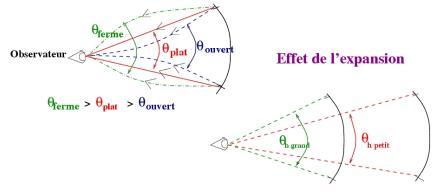
Rappels

- modèle cosmologique basé sur la RG
- géométrie "non triviale"...
- univers en expansion
- phase primordiale dense et chaude (inflation ?)
- paramètres importants : H_0 (taux d'expansion) , Ω_X (densité d'énergie réduite de l'espèce X)
- $\Omega_{tot} = 1 \Leftrightarrow \text{univers euclidien ("plat")}$
- Beaucoup de matières noires : WIMPS, MACHOs ...

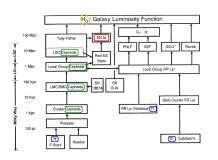
Supernovæ de type la

- Intérêt cosmologique
- Modèle d'explosion
- Projets: SNLS, SNIFS, WFIRST (ex SNAP/JDEM)

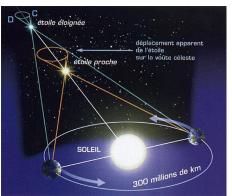
Cosmologie "classique"

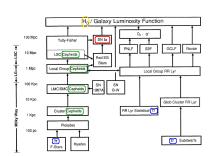

Si on mesure H_0 , Ω_0 et $\Omega_\Lambda \Rightarrow$ géométrie (courbure) et dynamique de l'univers "déterminés"

- \rightarrow tests cosmologiques "classiques" :
 - luminosité apparente de "chandelles standard" : luminosité absolue (intrinsèque) $\mathcal L$ connue \Rightarrow flux apparent $\Phi \propto 1/R^2$ Distance de luminosité $d_L^2 = \frac{\mathcal L}{4\pi\Phi}$
 - Taille apparente de "règles standard" ...
 - Comptage de galaxies (variation de l'élement de volume)
 - ...

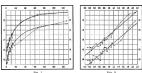

Age, taille de l'univers ⇒ cohérence du modèle

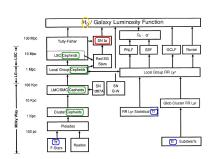
Géométrie et tailles angulaire


Geometrie de l'Univers et taille angulaire

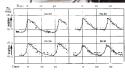

D'après C. Lineweaver

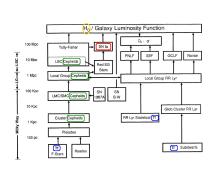
$$(\pi == parallaxe)$$

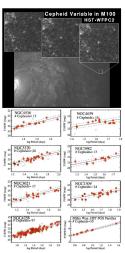



Cosmologie

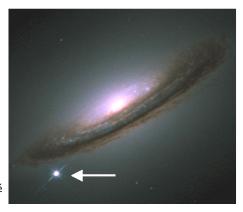
$$(\pi == parallaxe)$$



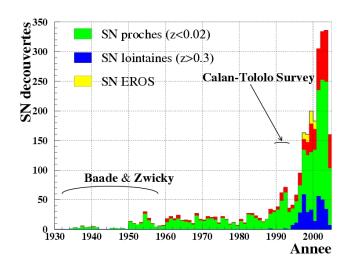



$$(\pi == parallaxe)$$

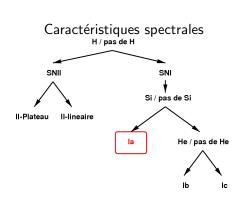
$$(\pi == parallaxe)$$

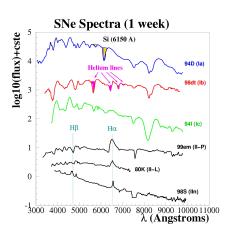


Cosmologie

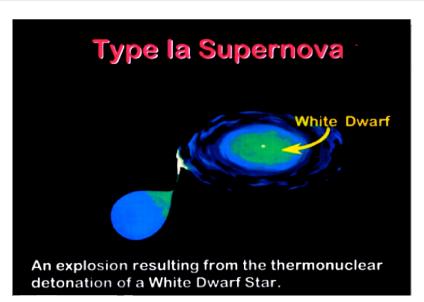

Supernovæ

- Explosion d'étoiles
- $\mathcal{L} \sim 10^{10}$ 10^{11} L_{\odot} (SNIa) (détectables jusquà des redshift ≈ 1)
- fréquence : 1 SN/GAL/siècle
- 2 espèces :
 - SNIa
 - ★ SNe thermonucléaires
 - caractéristiques homogènes
 - ► SNII,Ib,c
 - **★** SNe gravitationnelles
 - grande diversité, continuité entre classes?


Cosmologie



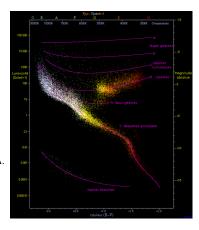
Taux de découvertes


Classification des SN

Cosmologie

Modèle pour les SNIa

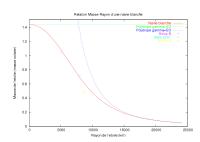
Naine Blanche


"vie" d'une étoile "ordinaire" ($\sim 2 M_{\odot}$)

- Fusion thermonucléaire $H \rightarrow He \rightarrow C, O$
- lacktriangle Quand plus de combustible o plus de fusion
- → contraction → ionisation
- ⇒ objet compact, "blanc" , peu lumineux ⇒ "naine blanche"

premier cas observé mi- 19ème siècle identification vers 1910

 $\sim 1920-30$ étudiées pour tester la Relativité Générale (A. Eddington) : champ gravitationnel "fort"


Ex: Sirius B

Stabilité des naines blanches

résultat de la compétition gravitation $\leftrightarrow P_{Fermi}$ matière dégénérée (electrons)

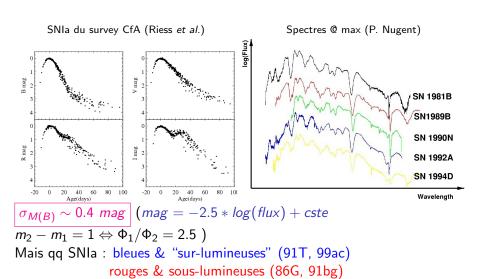
Chandrasekhar (1930): masse limite!

$$M_{\star} \leq M_{Chandrasekhar} = \left(\frac{hc}{3G}\right)^{3/2} \left(\frac{1}{\mu m_{p}}\right)^{2} (\sim 1.44 M_{\odot})$$

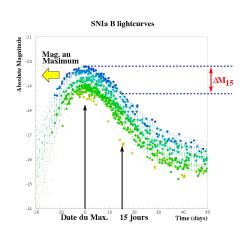
Cosmologie

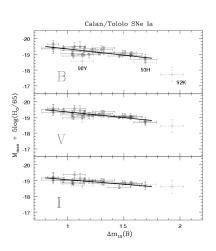
'One is left speculating on other possibilities.' S. Chandrasekhar

'I think there should be a law of nature to prevent a star from behaving in this absurd way' sir A. Eddington


Mécanisme d'explosion (SNIa)

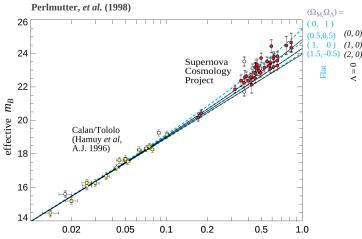
Système progéniteur = naine blanche (C/O) + géante rouge accretion vers la NB (+ compacte) $\Rightarrow M_{\star} \nearrow$ Quand $M_{\star} \sim M_{Chandrasekhar}(1.4M_{\odot})$: explosion thermonucléaire Combustion totale (masse cste de combustible !) C/O \rightarrow éléments plus lourds dont $\approx 0.5 M_{\odot}$ de ^{56}Ni


56
Ni $ightarrow$ 56 Co $^{}+\gamma$ 56 Co $^{}-\gamma$ 56 Fe $^{}+\gamma$


→ forme de la "courbe de lumière"

Homogénéité des SNIa

Standardisation des SNIa



Hamuy et al 1996

Relation magnitude ↔ **redshift**

$$m \sim M-5 \log_{10}(H_0)+5 \log_{10}^{\text{redshift}} z$$
 loi en $1/R^2$ + loi de Hubble $+1.086 (1-q_0)z+O(z^2)$ (+ grande distance)

Cosmologie

$$q_0 = \Omega_0/2 - \Omega_{\Lambda}$$

O. Perdereau (()

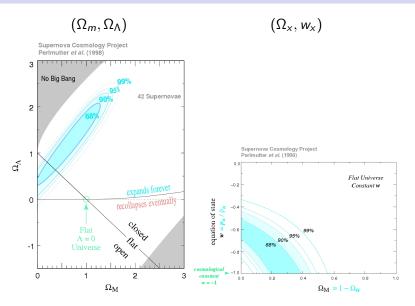
"Energie noire"?

Constante cosmologique ou "énergie noire"?

MQ : niveaux d'énergie de l'oscillateur harmonique E_{-} $(n+1/2)\hbar\omega$ \Rightarrow énergie du vide $E_{0}=1/2\hbar\omega$

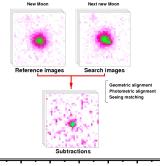
Du point de vue thermodynamique : ρ_{vac} est constant $\Rightarrow P = -\rho c^2$ (csq du 1er principe)

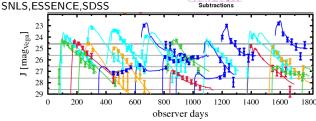
 $Λ \equiv 8\pi G \rho_{vac}$


MAIS Σ (énergies du vide des champs) pour modèle std \to 10¹²⁰ odg trop grand ...

- ightarrow autre origine (nveau champ) = "quintessence" Equation d'état paramètrée : $ho \sim V^{-(1+w)}$
 - Λ : w = -1
 - matière w = 0,
 - cordes cosmiques w = -1/3
 - ...

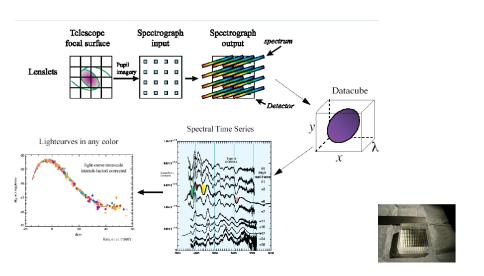
"Signature" de w: évolution avec z (m(z))

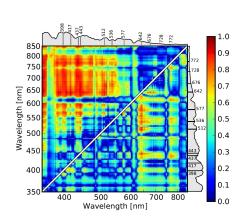


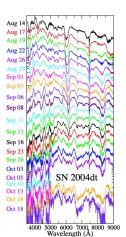

Dégénérescences

Découvertes et suivi

- Découvertes "automatiques" ⇒ programmables téscope grand champ quelques nuits ex. EROS-II: 1 SNIa / 2h
- Suivi plus demandeur : plusieurs télescopes ou tel. dédié
 - ⇒ instrument SNIFS
 - ⇒ mode "suivi" (découverte et suivi simultannés) →




SN Factory ("usine à SN")


- But : $\sim 100 200$ SNIa proches ($z \le 0.1$)
- Découvertes faites en "parasite" avec les images de NEAT (recherche automatique d'astéroïdes, 2 telescopes @ Palomar et Hawaï) traitement à Berkeley
- Identification et suivi : temps garanti sur tel. de 2.2m de l'U. de Hawaï équipé du SNIFS (made in France: CRAL, IPNL, LPNHE)
- $\bullet \sim$ 20 SNe découvertes en 2003 ; SNIF livré mi-2004; tests sur le ciel en cours
- Fonctionnement "routinier" depuis 2005
- ullet \sim 600 SN (tous types) découvertes (2008)

Principe du SNIFS

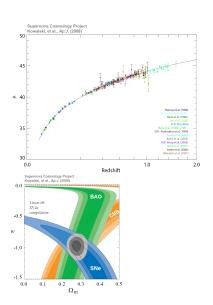
Produits SN Factory

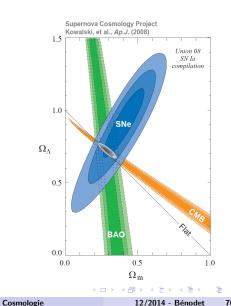
Vers une meilleure standardisation des SNIa : $\Delta m_{15}
ightarrow$ rapports d'intensités spectrales ?

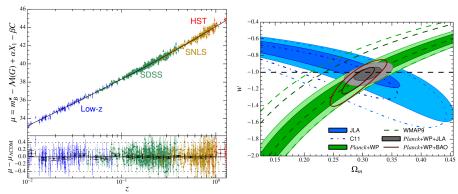
SNLS

- Cadre : Legacy Survey au CFHT
- ... avant fermeture définitive du CFHT (tel. 4m Mauna Kea Hawai)
- Observations "régulières" (mode survey) découvertes et suivi photométrique combinés
- temps complémentaire au CFH et sur des tel. de 10m (spectro)
- ullet \sim 40 nuits / an (recherche) pendant 5 ans (2003-2008)
- ullet ~ 450 SNIa "bien suivies" cosmo avec ~ 250

Megacam

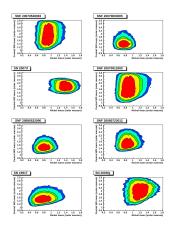





Resultats de SNLS

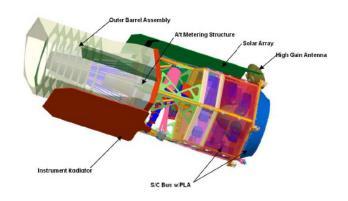
76 / 167

Resultats de SNLS(2)



+ de statistique, travail sur les systématiques ...

(M. Betoule et al arXiv:1401.4064)

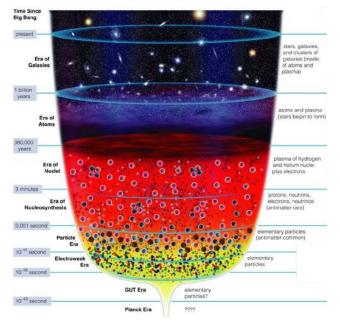

Incertitudes Systématiques

- plusieurs instruments : combiner les mesures demande de connaître le spectre des objets
- environnement des SNIa (rougissement)
- dispersion intrinsèque : corrèlation entre couleur et luminosité au max (après correction pour la forme de la courbe de lumière)
- composition exacte / mécanismes d'explosion ⇒ dispersion de luminosité ?
- indices d'une corrélation entre luminosité max et type de la galaxie-hôte
- quelques SNIa "super-massives"
- → limitation systématique sur la mesure de distance ?

78 / 167

SNAP/JDEM/W-FIRST

Horizon $\sim 202x$ - Priorité US (Decadal Survey) - 1.6 G\$ Telescope 1.5m - imageur 144 Mpix (IR proche) programme : de l'énergie noire (SN, WL, BAO,...) aux **exoplanètes** collaboration avec EUCLID ??


Depuis anisotropies du CMB ...

- Emission & caractéristiques du CMB
- Pourquoi des anisotropies ?
- Méthodes d'analyse
- Programme(s) : Planck (+ les autres)
- Développements récents

... vers les grandes structures

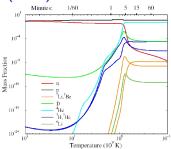
- Oscillations acoustiques de baryons (BAO)
- Futur : LSST

(5) formation des structures (galaxies, étoiles, ...) par la gravitation

> photons = découplage (à 300000 ans) → émission du CMB

"Libération" des

- Nucléosynthèse (de 3 à 30 mn) (\rightarrow éléments légers)
- expansion "lente" : apparition de quarks, leptons (electrons) puis nucléons (p,n)
- (1) inflation


(4)

état initial (??)

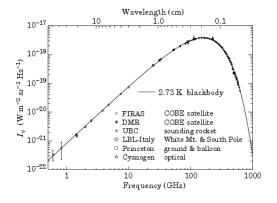
Le CMB

• Prédiction : R. Alpher, G. Gamow (1948)

Le CMB

- Prédiction : R. Alpher, G. Gamow (1948)
- Découverte fortuite en 1965 (Penzias & Wilson) manip "dédiée" en construction !

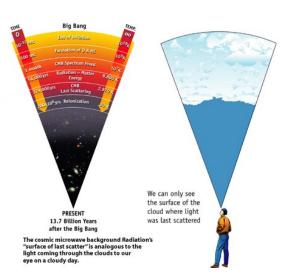
DISCOVERY OF COSMIC BACKGROUND



MAP990045

Robert Wilson

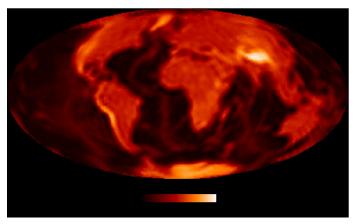
Le CMB


- Prédiction : R. Alpher, G. Gamow (1948)
- Découverte fortuite en 1965 (Penzias & Wilson)
- Rayonnement quasi-isotrope

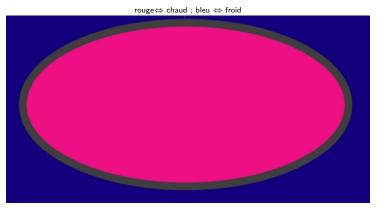
- Spectre = "corps noir"
- pic à 100 GHz $TV \text{ sat } \sim 10 \text{GHz}$ portable $\sim 2.5 \text{GHz}$
- 400 photons/cm³
- ... qq % du bruit d'une TV

Emission du CMB

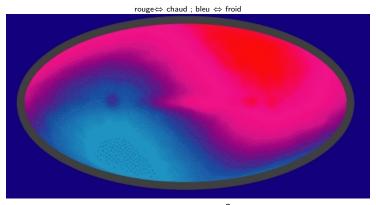
- Univers primordial (t < 300000 ans, T > 3000 °K/2700°C) électrons, protons (noyaux) et photons/rayonnement
 - ▼ T élevée ⇒ pas d'atomes
 - photons réfléchis ou absorbés :Univers opaque
- Quand T ≈ 3000° K les électrons se lient aux noyaux ⇒ Univers transparent : émission du CMB
- Sexpansion de l'univers ⇒ Décalage vers le rouge "cosmologique" : T_{CMB} apparente → 2.7° K ⇒ CMB dans l'infra-rouge lointain



 T_{CMB} dans chaque direction \rightarrow carte du "ciel" (couleur \leftrightarrow T)

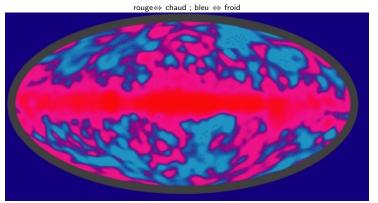

Le ciel nocturne (visible)

 \mathcal{T}_{CMB} dans chaque direction ightarrow carte du "ciel" (couleur \leftrightarrow T)

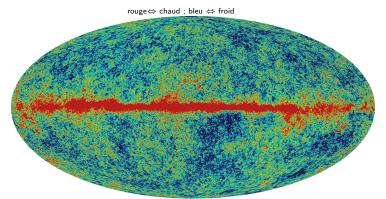

Représentation d'une sphère connue

 T_{CMB} dans chaque direction \rightarrow carte du "ciel" (couleur \leftrightarrow T)

CMB très uniforme (à 1/1000 près)


 T_{CMB} dans chaque direction \rightarrow carte du "ciel" (couleur \leftrightarrow T)

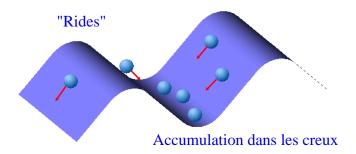
 $(\delta T/T \sim 10^{-3})$ mvt de la Terre \Rightarrow effet Doppler \sim 400 km/s (\sim mvt orbital galactique)



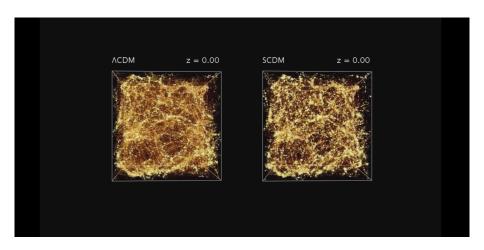
 T_{CMB} dans chaque direction \rightarrow carte du "ciel" (couleur \leftrightarrow T)

Fluctuations primordiales ($\delta T/T \sim 10^{-5}$)+ Galaxie (1/100000 près) COBE (1992)

 T_{CMB} dans chaque direction \rightarrow carte du "ciel" (couleur \leftrightarrow T)

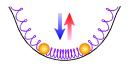


Fluctuations primordiales ($\delta T/T \sim 10^{-5}$)+ Galaxie (1/100000 près) WMAP (2003)


Des fluctuations aux anisotropies

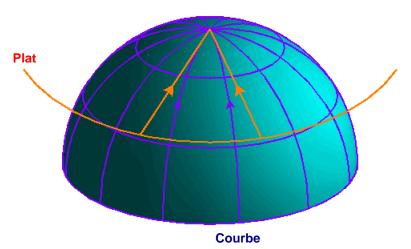
- Dans l'univers "quantique" \Rightarrow fluctuations de densité (d = f(x, t))
- Inflation ⇒ dilatation d'échelle très rapide
- \Rightarrow "gel" des fluctuations (\sim gaussiennes invariantes d'échelle) \rightarrow anisotropies de densité

graines des grandes structures

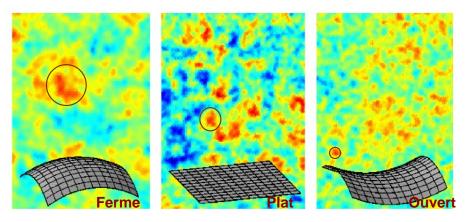


Simulations

Des ondes acoustiques avant le découplage!


- Il existe des zones plus denses et moins denses
- milieu composé de protons (+ qq noyaux He,...), d'électrons ("libres") et de photons (plasma ⇒ pression " de radiation")
- quand la matière "tombe" là où c'est plus dense (gravitation)
- ... mais la pression réagit

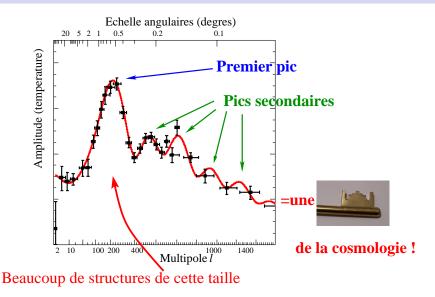
⇒ apparition d'oscillations (ondes acoustiques) ds le plasma primordial


Vitesse des ondes ↔ composition, densité du milieu, ... anisotropies de densité ⇔ régions + ou - chaudes ⇒ état final (au découplage) = anisotropies de température du CMB

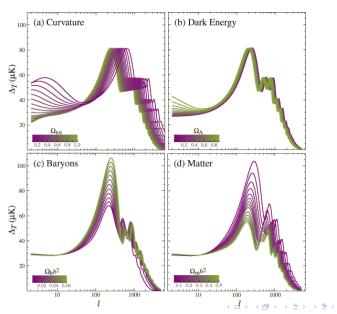
Propagation du CMB

La taille (apparente) angulaire des anisotropies est modulée par la géométrie de l'Univers

Géométries et anisotropies


Pb: extraire des infos quantitatives des cartes

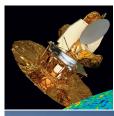
Principe : estimer parmi les fluctuations la fréquence de chaque taille


Méthode : décomposition sur les "harmoniques sphériques"

La courbe des C_{ℓ}

Un outil sensible!

Une mesure de ... tout !?

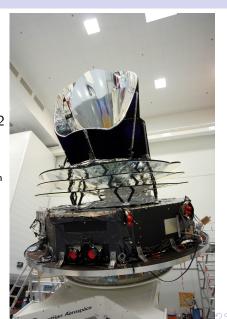

Les anisotropies du CMB combinent :

- des informations "pré-" ou sur l'inflation (spectre initial des anisotropies)
- des manifestation de la physique ("simple") du plasma primordial (ondes acoustiques) et de ses paramètres
- 3 les effets de la géométrie de l'univers

Il s'agit donc d'une mesure clef de la cosmologie (sensible à $\sim tous$ les paramètres !)

Aperçu expérimental

- COBE-DMR (1992) anisotropies (radio)
- WMAP 2003(-11) Mesures de $C_\ell o \ell = 1000$ radio
- Planck 2009(-13) $C_\ell \rightarrow \ell = 2000$ COBE×1000, WMAP×10
- Boomerang, Maxima (1998) : 1er pic (bolomètres)
- Archéops (2002)
- ullet CBI,VSA,DASI (radio, 2000-2) : grands ℓ
- futur à tous les etages : sol (BRAIN/QUBIC, ACTpol, SPTpol, POLARBEAR,...), ballon (OLYMPO, EBEX, SPIDER, PIPER,..., ...), espace (BPOL/CORE+?, PIXIE?)

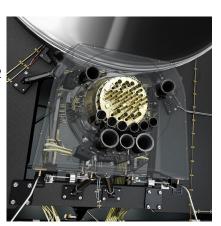

Planck: la mission

Mission de l'ESA Lancement 15 Mai 2009 (avec Herschell)

Durée garantie : 14 mois @ L2 (1.5Mkm)

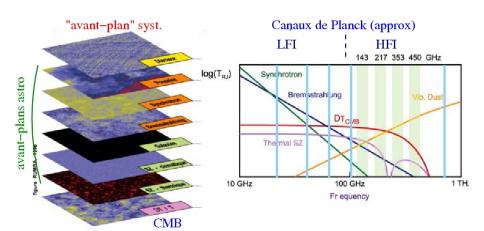
- 1 Telescope (1.5m) consortium danois
- LFI (radiomètres 10-80GHz) consortium piloté par U. Bologne
- 4 HFI: bolomètres (100-800 GHz) consortium piloté par IAS (Orsay 1)

HFI : \sim 29 mois - fin 14/01/2012 LFI arreté le 14/08/2013

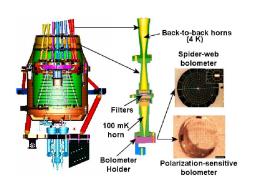

Planck: la mission

Mission de l'ESA Lancement 15 Mai 2009 (avec Herschell)

Durée garantie : 14 mois @ L2 (1.5Mkm)

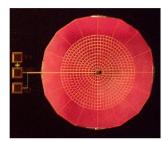

- 1 Telescope (1.5m) consortium danois
- 2 LFI (radiomètres 10-80GHz) consortium piloté par U. Bologne
- 3 HFI: bolomètres (100-800 GHz) consortium piloté par IAS (Orsay)

HFI : \sim 29 mois - fin 14/01/2012 LFI arreté le 14/08/2013

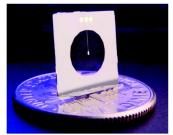


Cosmologie

Avant-plans

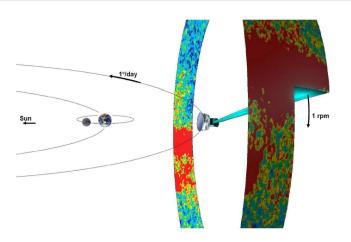


Planck HFI



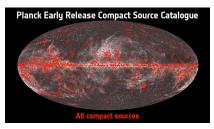
- Au foyer du télescope ("dans LFI")
- Refroidissement à plusieurs étages
- Dernier étage (dilution ${}^3He/{}^4He$) T \sim 0.1 K
- Détecteurs : bolomètres (52 voies)
- "prototype" = Archéops

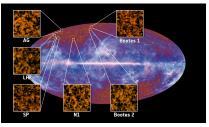
Les bolomètres



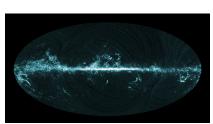
- mesurent la chaleur déposée par les γ
- grille→cosmiques
- taille 2.6mm
- "fils" $4 \times 1 \mu$ m
- \bullet T \sim 100 mK (sensibilité)

Cosmologie


Planck à L2

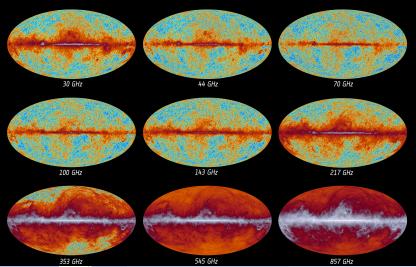


Observations en continu (\sim 7 mois \rightarrow tout le ciel) Redondances des époques différentes (systématiques)

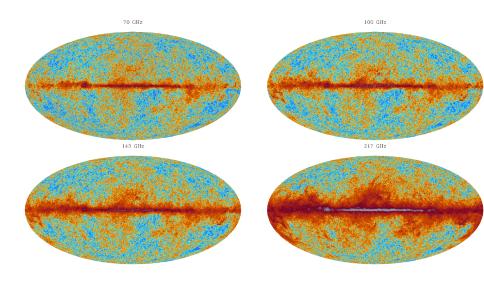


Résultats intermediaires (2009-2012)

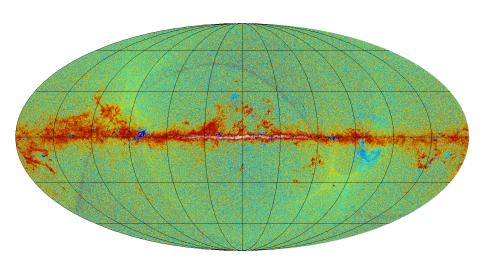
Emission du CO


Et enfin (!) \sim 30 articles en 2013 + XX en 2014/15...

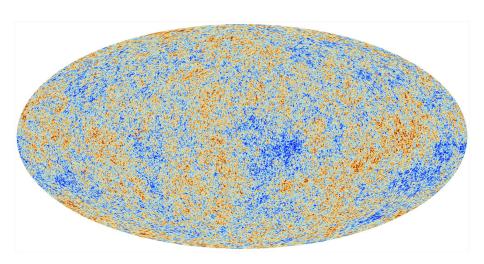
Cosmologie



The sky as seen by Planck

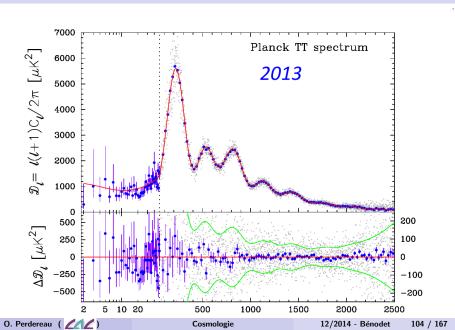


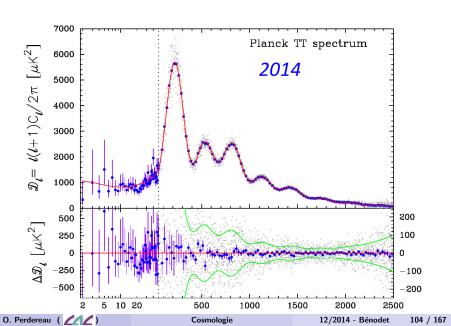
Fréquences centrales



Cosmologie

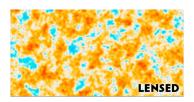
Cohérence: 100-70 GHz


Planck (2013) CMB temperature anisotropies map


4 methods compared in : Planck 2013 results. XII. Component separation

Spectres de puissance du CMB

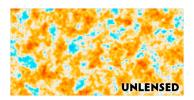
Spectres de puissance du CMB



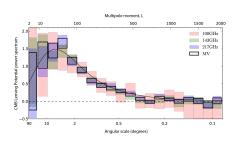
CMB lensing by Large Scale Structures

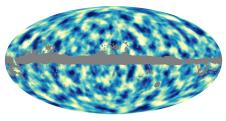
LSS distorsion of the CMB photons' paths

ightarrow small "smearing" of the \mathcal{C}_ℓ spectra + distorsion of the CMB image



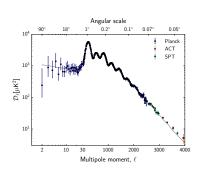
CMB lensing by Large Scale Structures

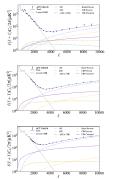

LSS distorsion of the CMB photons' paths



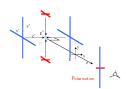
ightarrow small "smearing" of the \mathcal{C}_ℓ spectra + distorsion of the CMB image

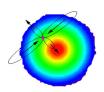
Mapping the lensing structures

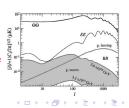



Analysis of CMB anisotropies 4 points statistics \Rightarrow Power spectrum of the deflexion field (integrated information on LSS @ $z \approx 2.5$) used in cosmological parameter fits together with C_{ℓ}

Et à part Planck?



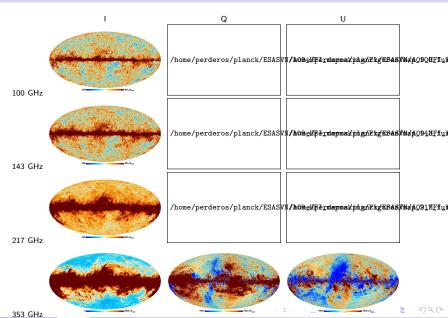

Polarisation et CMB


- ullet onde électromagnétique = propagation de variations du champ $(ec{E},ec{B})$
- si une direction pour chaque vecteur est (toute ou partie) privilégiée : polarisation (photo, cinéma 3D,..)
- le CMB is (faiblement) polarisé (linéairement)
- polarization sur le ciel = champ de vecteur ⇒ paramètres de Stockes
 Q, U
- décomposition harmoniques → modes paires (E) et impairs (B)
- ullet 6 spectres de puissance ; par symétrie \Rightarrow $C_\ell^{TB} = C_\ell^{EB} = 0$

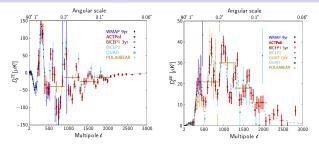
CMB et polarization

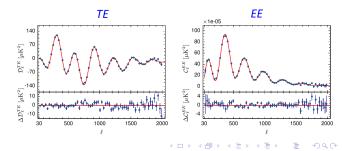
- Mecanisme de base : anisotropie quadrupolaire de température + diffusion Thomson sur un e
- Origines:
 - $\begin{tabular}{ll} \bullet & \text{onde gravitaionnelles primordiales} \\ \text{(modes tenseurs)} \to \mathsf{B} & \text{modes} \\ \end{tabular}$
 - dynamique du plasma primordial (corrélation avec anisotropies de temp.) → E modes
 - ▶ ré-ionisation tardive $(z \sim 6 10)$ → E modes (bas ℓ)
 - lensing transforme (une partie des modes) E en modes B
- ullet très faibles amplitudes ($\sim 10^{-2}-10^{-4}$ temperature)
- l'amplitude des modes B primordiaux mesure $r=A_t/A_s$ (\propto échelle d'energie de l'inflation)

Mesurer la polarisation du CMB

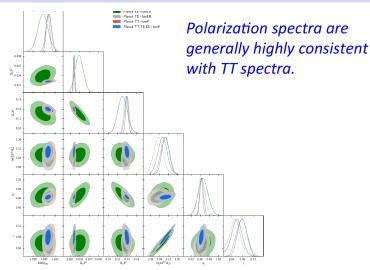

lacktriangle détecteur idéal (o une direction de polar) d'orientation ψ :

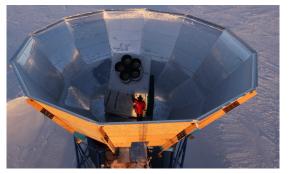
$$m = I + Q\cos 2\psi + U\sin 2\psi$$


- mesurer I,Q,U measurements ⇒ combiner plusieurs mesures et/ou detecteurs avec differentes orientations
- + arrangement par paire orthogonales
- exemples d'expériences :
 - ▶ Planck (1992-2014) : O(10) detecteurs appariés ~ orthogonaux + balayage du ciel pour changer d'orientation
 - Bicep: phase 1 (2007-2008) O(100) det. (Planck-like); phase 2 (2010-2012) O(500) det.; phase 3 (Keck array, 2011-2016) O(2500) detecteurs appariés, rotation de l'instrument/ciel
 - SPTpol O(780x2) detectors , 90 and 150 GHz (première mesure des modes B lensés 2013)
 - ▶ Polarbear O(1200) detectors + lame 1/2 onde rotative pour moduler la polarisation (B modes lensés, 2013-) version 2 avec 2 freq. et O(7000) detecteurs
- attention aux systés ⇒ mélange entre I et Q,U (affectent surtout les grandes échelles/bas l ...) Ex. : Planck HFI polarisation data "on hold"...


Cartes de polarisation

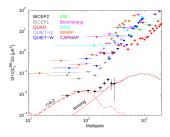
Spectres de puissance en polar




112 / 167

Paramètres cosmologiques

+ pas d'indications d'extensions : 3 $\nu,$ $\sum M_{\nu} <$ 0.2 eV , pas de courbure, Λ + H_0 bas / mesures locales


Bicep2/Keck array

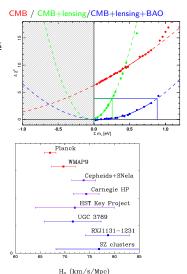
 $\ensuremath{\mathsf{NB}}$: réfracteur (optique=lentilles)- observations à 150 GHz seulement ...

Heurs et malheurs des modes B

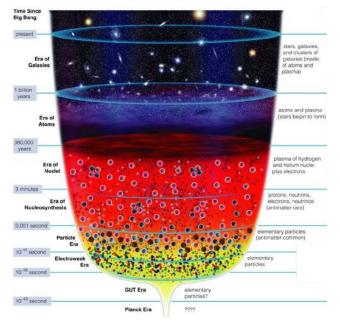
- mars 2014: Bicep 2 annonce la découverte des modes B primordiaux (r = 0.2@4sigmas) ('+"visite" à A. Linde sur YouTube...)
- mai-juillet : doutes sur le modèle d'avant plan utilisé (basé sur des slides de Planck 2013 numérisés ...)
- septembre 2014 : Planck publie ses mesures de polarisation des émissions de poussières (à 353 GHz) ⇒ composante non négigeable pour Bicep2 (peut expliquer tout le signal à bas ℓ)
- décembre 2014 : analyse croisée
 BICEP2/Planck + données BICEP3
 (Keck) ⇒ limite supérieure sur r plus de signal primordial ...
- → La chasse continue ... mais attention aux avants-plans !!

Heurs et malheurs des modes B

- mars 2014 : Bicep 2 annonce la découverte des modes B primordiaux (r = 0.2@4sigmas) ('+"visite" à A. Linde sur YouTube...)
- mai-juillet : doutes sur le modèle d'avant plan utilisé (basé sur des slides de Planck 2013 numérisés ...)
- septembre 2014 : Planck publie ses mesures de polarisation des émissions de poussières (à 353 GHz) ⇒ composante non négigeable pour Bicep2 (peut expliquer tout le signal à bas ℓ)
- décembre 2014 : analyse croisée BICEP2/Planck + données BICEP3 $(Keck) \Rightarrow limite supérieure sur r - plus de$ signal primordial ...
- La chasse continue ... mais attention aux avants-plans !!

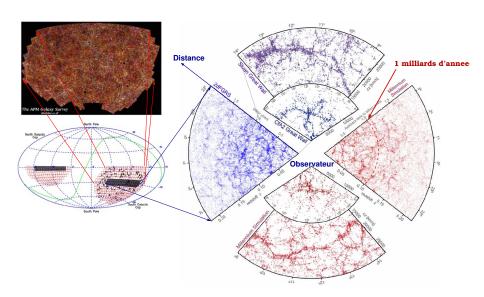

Cosmologie

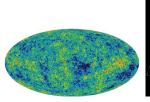
planck_bmodes_lens2014.pdf Correlation avec Plan PRELIMINAIRE bmodes_xspec.pdf

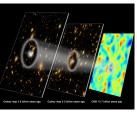


Quelques conclusions

- le modèle ΛCDM le + simple est renforcé par les mesures CMB (Planck) + BAO (BOSS) (+SNIa)
- limites sur M_{ν} meilleures qu'en labo : $\sum M_{\nu} \lesssim 0.20 eV$
- pas d'indication de courbure, d'énergie noire "complexe"
- quelques tensions avec mesures locales (H₀) ou impliquant l'amplitude des anisotropies de densité (σ₈), i.e. (astro)physique non-linéaire
- recherche intensive des modes B primordiaux ("smocking gun" de l'inflation)
- incertitudes maintenant dominées par systématiques




(5) formation des structures (galaxies, étoiles, ...) par la gravitation


- (4) "Libération" des photons = découplage (à 300000 ans) → émission du CMB
- Nucléosynthèse (de 3 à 30 mn) (→ éléments légers)
- (2) expansion "lente" : apparition de quarks, leptons (electrons) puis nucléons (p,n)
- (1) inflation
 - 0) état initial (??)

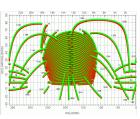
Cartes de l'univers - Rappel

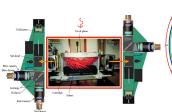
les BAO

A l'époque de la recombinaison (émission du CMB)

ightarrow \exists une taille de structure "préférée" (1er pic des \mathcal{C}_ℓ) pour les baryons

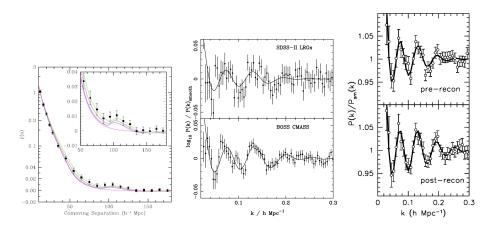

Evolution des structures ultérieure : gravitation (newtonnienne)

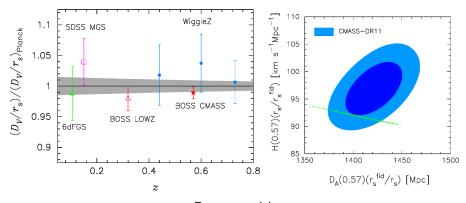

- → "croissance" (linéaire d'abord) des plus grosses
- \Rightarrow échelle préférée dans la distribution de la matière baryonnique (galaxies) \sim 500 M années-lumière accessible avec la fct de corrélation spatiale (2 ou 3D)
- \rightarrow suivi de l'évolution de cette taille vs z (+ taille transverse)


O. Perdereau (

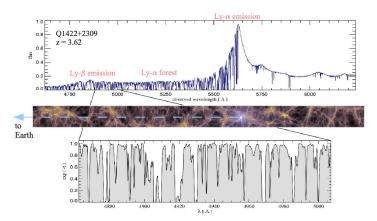
SDSS III/BOSS

SDSS
Telescope de 2.5m
imageur (pos. objets)
spectro à fibres (BOSS)
(1000 objets par pose)
9ème 'data release'
catalogues (galaxies, QSO, ...)
survey fini en 2014
extension en cours + nouvelle
phase en projet

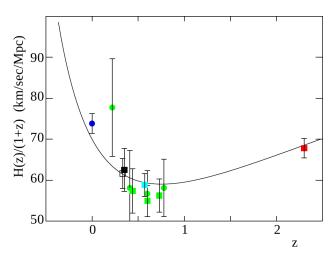




Pic(s) acoustique(s) ds la distri des galaxies



BAO vs Planck (2014)


Bon accord ! \Rightarrow résultats combinés plus précis !

sonder plus loin avec les quasars

quasars : objets très brillants + très lointains $(z \sim 3-7)$ raies d'absorbtion d'H dans le spectre \rightarrow distribution de la matière

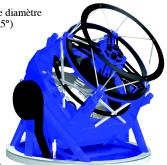
Vers l'histoire de l'expansion

H₀ SN prochesBAO galaxies Quasars

Cosmologie à 21cm

• H atomique : emission $\lambda = 21 \ cm$

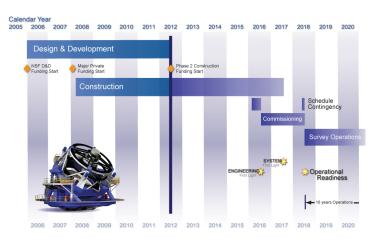
- information en direction + distance (z)
- ullet émission diffuse o $T(lpha,\delta,z)$
- survey radio (400-1400 MHz) \rightarrow cosmologie $z \sim 1-2$
- avants plans (humains + astro) + sensibilité nécessaire → interférométrie + site "calme"
- $\sim 10000m^2 \rightarrow$ "low cost"
- projets en cours de construction : TianLai (Chine/Fr/US), Chime (Canada/US), Bingo (UK/..)


LSST (1)

LSST: Large Synoptic Survey Telescope

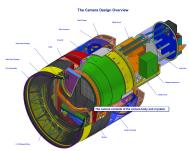
 Télescope optique de 8,4 m de diamètre avec caméra grand champ (3,5°)

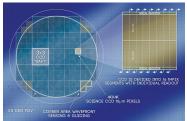
- Au Chili (Cerro Pachon)
- imaginé fin des années '90
- Caméra de 3.2 Gpixels
- Lecture 2s
- 6 filtres ugrizy
- WL jusqu'à z ~ 3
- SNIa jusqu'à z ~ 1
- BAO: oscillations acoustiques
- Galaxies et amas de galaxies
- Phénomènes transitoires

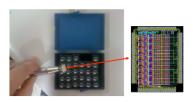

Cosmologie

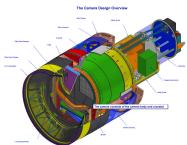
http://www.lsst.org/

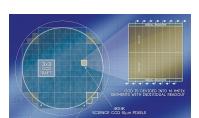
NB Priorité au sol dans le "decadal survey" US

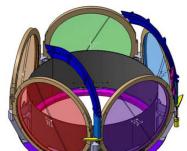



LSST (2)

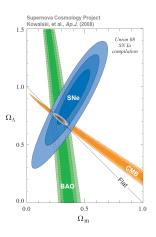

LSST (3)

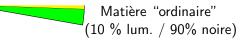



Cosmologie

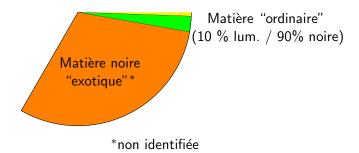


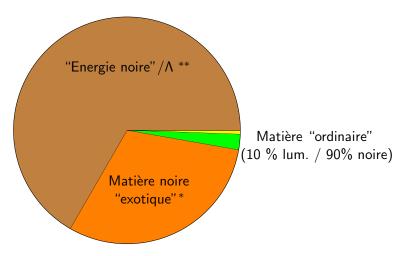
LSST (3)





Conclusion(s)


- lacktriangle cosmologie qualitative ightarrow quantitative
- ullet anisotropies du CMB o pièce essentielle du puzzle
- d'autres directions :
 - ► BAO
 - Supernovæ lointaines,
 - Recherches directes et indirectes de matière(s) noire(s)
 - mais aussi (entre autres) :
 - ★ Lentilles gravitationnelles
 - ★ Etudes des amas de galaxies (X, dynamique, ...)
 - *
- mesures "concordantes" (~ 6 paramètres)
- mesurent un Univers \sim "plat" $(\Omega_0 \sim 1)$ mais au contenu mystérieux (... et noir !)


Composition de l'univers

Composition de l'univers

Composition de l'univers

*non identifiée **encore plus mystérieuse

Dans la nuit des temps

Sources

- site de Wayne Hu (background.chicago.edu/ whu)
- Site de WMAP (map.gsfc.nasa.gov)
- cours de J. Wilms (Univ. Tuebingen astro.uni-tuebingen.de/ wilms/teach/index))
- sites de Planck : planck.fr, ESA (www.esa.int/index.php?project=planck)
- Atlas de l'univers (atunivers.free.fr)
- Multiwavelength Milky Way (asc.gsfc.nasa.gov/mw/milkyway.html)
- S. Weinberg : les trois premières minutes de l'univers
- J. Silk: le Big-Bang, l'univers et l'infini, une breve histoire de l'univers (O Jacob)
- J Gribbin : a la poursuite du Blg-Bang (Flammarion)
- G. Smoot : les rides du temps (Flammarion)
- ...

Distances élémentaires

Dans le plan (x, y)

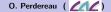
- longueur infinitésimale : $ds^2 = dx^2 + dy^2 := métrique$
- en coord. polaires (r, θ) : $ds^2 = dr^2 + r^2 d\theta^2$
- facteur d'échelle R t.q. $r \rightarrow Rr$:

$$ds^2 = R^2(dr^2 + r^2d\theta^2)$$

Distances élémentaires (II)

Pour la 2D-sphère :

$$x^{2} + y^{2} + z^{2} = R^{2} \Rightarrow z = \sqrt{R^{2} - x^{2} - y^{2}} \Rightarrow dz = -\frac{xdx + ydy}{\sqrt{R^{2} - x^{2} - y^{2}}}$$


longueur infinitésimale:

$$ds^{2} = dx^{2} + dy^{2} + dz^{2} = dx^{2} + dy^{2} + \frac{(xdx + ydy)^{2}}{R^{2} - x^{2} - y^{2}}$$

• avec les coordonnées polaires (r, θ) t.q. $x = r \cos \theta, y = r \sin \theta$

$$ds^2 = R^2 \left(\frac{dr^2}{1 - r^2} + r^2 d\theta^2 \right)$$

Cosmologie

Distances élémentaires (III)

• "selle de cheval"

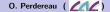
$$x^{2} + y^{2} - z^{2} = R^{2} \Rightarrow ds^{2} = R^{2} \left(\frac{dr^{2}}{1 + r^{2}} + r^{2} d\theta^{2} \right)$$

formulation unifiée :

$$ds^{2} = \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2}\right) \quad (k = 0, -1, +1)$$

 $distance^2 = facteur d'échelle^2 longueur ¡¡comobile;;²$

Distances élémentaires (III)


"selle de cheval"

$$x^{2} + y^{2} - z^{2} = R^{2} \Rightarrow ds^{2} = R^{2} \left(\frac{dr^{2}}{1 + r^{2}} + r^{2} d\theta^{2} \right)$$

formulation unifiée :

$$ds^2 = \left(\frac{dr^2}{1 - kr^2} + r^2d\theta^2\right) \quad (k = 0, -1, +1)$$

distance² = facteur d'échelle²longueur ¡¡comobile¿ ι ²

Métrique

- Principe d'équivalence (p. cosmologique + expansion) \Rightarrow métrique $(ds^2 = g_{\mu\nu}x^{\mu}x^{\nu})$ à 2 termes : temporel + spatial
- homogénéité + isotropie \Rightarrow partie spatiale à symétrie sphérique : $d\psi^2 = d\theta^2 + \sin\theta^2 d\varphi^2$
- expansion \Rightarrow facteur d'échelle R(t)
- ⇒ Forme générale pour la métrique

$$ds^{2} = c^{2}dt^{2} - R^{2}(t) \left(f^{2}(r)dr^{2} + g^{2}(r)d\psi^{2}\right)$$

$$ds^{2} = c^{2}dt^{2} - R^{2}\left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2}\right) \quad (k = 0, -1, +1)$$
$$ds^{2} = c^{2}dt^{2} - R^{2}(t)\left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin\theta^{2}d\varphi^{2})\right)$$

(Friedman (URSS) Lemaître (Belgique) Robertson (US) Walker (US)) $_{\mathbb{S}} \longrightarrow \mathbb{R} \longrightarrow \mathbb{$

Conséquence(3) : dilatation des temps

Soit deux pulses lumineux séparés par Δt (petit \Rightarrow expansion négligeable dans cet intervalle)

séparation spatiale $D = c\Delta t(t_{emis.})$

Intervalle entre leur réception (loin/" plus tard" \Rightarrow expansion entre $t_{emis.}$ et $t_{recep.}$ non négligeable) ?

Séparation spatiale entre les deux impulsions :

$$D(t_{recep.}) = c\Delta t(t_{recep.})$$
 (c est constante)

Et: $D(t_{recep.}) = D(t_{emis.}) \frac{R(t_{recep.})}{R(t_{emis})}$ (expansion d'échelle)

Donc:

$$\Delta t(t_{recep.}) = \Delta t(t_{emis.}) \frac{R(t_{recep.})}{R(t_{emis})}$$

la durée d'un phénomène transitoire "distant" semble allongée observé p.ex. avec les variations lumineuses des SNe!

Masse de Chandrasekhar

 N_e e ultra-relativistes ($E \approx pc$) ds volume $V = 4/3\pi R^3$ statistique de Fermi pour les e + principe d'incertitude élément d'espace de phase $d\nu = 4\pi V p^2 dp/h^3$

Nbre de particules dans
$$V$$
: $N = \int_0^{p_{max}} 2V 4\pi p^2/h^3 dp$

$$\Rightarrow p_{max} \equiv p_{Fermi} = h \left(\frac{3N}{8\pi V}\right)^{1/3}$$

Energie (cinétique) totale :
$$E = \int_0^{p_F} pc \frac{4\pi p^2 V dp}{h^3} dp = \frac{3}{4} N_e p_F c$$

condition de stabilité :
$$E_{cin} \geq E_{pot}^{grav} = \frac{3}{5}G\frac{M^2}{R}$$
 avec $M = (N_p + N_n)m_p$

Cosmologie

$$\Rightarrow \frac{3}{4} N_e p_F c \ge \frac{3}{5} G \frac{M^2}{R} \Rightarrow \frac{3}{4} N_e c h \left(\frac{3N}{8\pi \frac{4}{3} \pi R^3} \right)^{1/3} \ge \frac{3}{5} G \frac{M^2}{R}$$

R s'élimine!!

 \Rightarrow Limite sur $N_e \rightarrow$ sur M_{\star} $(\mu = \frac{N_p}{N})$:

$$M_{\star} \leq \left(\frac{hc}{3G}\right)^{3/2} \left(\frac{1}{\mu m_p}\right)^2$$

ref L. Valentin 'Champs et particules'

