Astroparticule 2/3

Nathalie PALANQUE-DELABROUILLE CEA-Saclay Bénodet, novembre 2017

1

Astroparticule

1) Approche multi-messagers Rayons cosmiques (historique, propriétés)

- 2) Rayons cosmiques (état des lieux, derniers résultats) Sursauts gamma Ondes gravitationnelles
- 3) Neutrinos
 - Astronomie neutrino
 - Neutrinos et cosmologie

Astroparticule 2/3

Rayons cosmigues: techniques de détection

- Etat des lieux (Auger, Telescope Array) Fin du spectre (UHECR) Origine galactique / extra-galactique Sources
- Univers extrême et trous noirs
- Photons haute énergie et sursauts gamma
 - Ondes gravitationnelles

4

Lumière UV, uniquement par nuits claires et sans lune (~10%)

Trajectoire à partir de géométrie + timing ou mode dual (mieux)

Energie: largeur de la gerbe

Trajectoire déterminée à partir des temps d'arrivée du front d'onde sur détecteurs au sol

Energie déterminée à partir des comptages

Fluorescence de l'air + détecteurs au sol

 \rightarrow INTERCALIBRATION

sur 3000 km² en Argentine

4 stations de télescopes pour la fluorescence

- > million d'événements enregistrés - $E_{max} \sim 1 \ 10^{20} \text{ eV}$

10 ¹⁹ eV	détecteur de <mark>surface</mark>	détecteur de fluorescence	hybride
Δθ	2°	1°	0,4°
Δ impact	80 m	400 m	35 m
∆E / E	18%	15%	5%

10 ²⁰ eV	détecteur de <mark>surface</mark>	détecteur de fluorescence	hybride
Δθ	1°	1°	0,4°
Δ impact	40 m	400 m	30 m
∆ E / E	7%	10%	3%

Astroparticule 2/3

Rayons cosmigues: techniques de détection

Etat des lieux (Auger, Telescope Array): Fin du spectre (UHECR) Origine galactique / extra-galactique Sources

Univers extrême et trous noirs

Photons haute énergie et sursauts gamma

Ondes gravitationnelles

La « fin » du spectre

Essentiel du désaccord: modélisation des gerbes

AUGER - spectre UHE

4 lots indépendants

1/ Coupure GZK confirmée (spectre plat au delà de 4 10^{19} eV exclu > 6σ)

⇒ Rayons cosmiques issus de sources lointaines

2/ Indication de changement de composition (Z^{\nearrow} à 10^{19} eV)

 $\Rightarrow E_{max}$ atteint?

Galactiques ⇒ fortes anisotropies associées à Voie Lactée Extra-galactiques ⇒ inhomogénéités corrélées avec grandes structures locales

E > 8 10¹⁸ eV, anisotropie à 5.2σ, incompatible Voie Lactée Indication origine extra-galactique Signal à confirmer avec Telescope Array (Nord) pour 100% du ciel₁₇

Signal à confirmer avec Telescope Array (Nord) pour 100% du ciel

Number E > 57EeV	Number correlated within 3°	Expected if isotropy
27	20	5.6

Abraham et al., arXiv:0712.2843

Bonne résolution angulaire (<1°) ⇒ Etude des anisotropies

 \bigcirc Evts E > 57 EeV × AGNs d < 71 Mpc

2007: premiers indices de correlation des UHECR avec sources astronomiques

... mais non confirmés ...

2014: Correlation de 28% pour 21% (isotropie)

[arXiv:1411:6111]

Star-forming or starburst galaxies

e.g. M82, close to the TA hotspot

- Contribution principale au flux γ extra-galactique
- Hypothèse: flux UHECR \propto flux (non-thermique) photons γ
- ⇒ Recherche de correlations avec catalogues (Fermi-LAT) restreints à d<250 Mpc</p>

AGN Correlation à 2.7σ Fraction anisotropie = 7% Star-forming or starburst galaxies

Galaxie à forte formation stellaire Correlation à 4.0σ Fraction anisotropie = 10%

Petite indication de corrélation, à confirmer

Astroparticule 2/3

Rayons cosmigues: techniques de détection

 Etat des lieux (Auger, Telescope Array): Fin du spectre (UHECR) Origine galactique / extra-galactique Sources

Univers extrême et trous noirs

Photons haute énergie et sursauts gamma

Ondes gravitationnelles

Trous noirs

Approche en mécanique classique du trou noir

 $R_s = 3$ km pour le Soleil

R<R_s : étoile s'effondre en un état de densité d'énergie infinie (Oppenheimer et Snyder, 1939)

Trou noir dans la Voie lactée

orbites planétaires \rightarrow 3 millions Mo dans rayon < 124 u.a. = 3 d_{soleil-pluton}

 \rightarrow trou noir supermassif !

M87 : des jets de matière

Cen A composité Source des rayons cosmiques de ultra haute énergie ?

jets de particules accélérées

trou noir

Blazars

<u>Emission basse énergie</u> (rayons X) : émission synchrotron des e⁻ du jet

> Emission haute énergie (rayons γ): - auto-compton (electromagnétique) ? - désintégration π^0 (hadronique) ?

Blazars

Emission haute énergie (rayons y):

- auto-compton (electromagnetique)?
- désintégration π^0 (hadronique) ?

Sources de v

de haute énergie !

Astroparticule 2/3

Rayons cosmigues: techniques de détection

 Etat des lieux (Auger, Telescope Array): Fin du spectre (UHECR) Origine galactique / extra-galactique Sources

Univers extrême et trous noirs

Photons haute énergie et sursauts gamma

Ondes gravitationnelles

Autres messagers?

Sursauts Gamma (GRB)

1967 Découverte fortuite par les satellites VELA d'émission spontannée de rayons gamma (16 events), Publication en 1973

Gamma ray bursts (GRB)

1991 Observation avec les satellites C.G.R.O (EGRET, BATSE...) & BeppoSAX

objets les plus brillants de l'univers, émettant surtout à haute E 10⁴⁴ à 10⁴⁷ J ~ 1 M₀c² → émission collimatée ?

Δt de 10ms à quelques secondes ΔL (en 10ms) = c∆t = 30 000 km ≪ R_{soleil} → région compacte → trous noirs, étoiles à neutrons

aujourd'hui >5000 sursauts toujours mal compris...

Localisation des sursauts

Contrepartie optique

Toutes galaxies Objet compact (causalité) Kilonova (merger NS-NS ou NS-BH) ? Galaxies à forte formation stellaire Associations supernova type II (effondrement étoile massive) 39

Astroparticule 2/3

Rayons cosmigues: techniques de détection

- Etat des lieux (Auger, Telescope Array): Fin du spectre (UHECR) Origine galactique / extra-galactique Sources
- Univers extrême et trous noirs
- Photons haute énergie et sursauts gamma
 - Ondes gravitationnelles

Gravitation et espace-temps

Un espace-temps courbe (*z* relat. restreinte)

Ondes gravitationnelles

relativité générale \rightarrow ondes gravitationnelles

- prédiction dès 1918
- Un siècle avant première détection Pourquoi?

Ondes gravitationnelles

Explosion SN dans amas de la Vierge (15 Mpc): h ~ 10⁻²¹ à 10⁻²⁴

Système de deux trous noirs: h ~ 10⁻²² à 10⁻²³

Pour $L_{terre-soleil} = 150.10^6$ km $\rightarrow \delta L \sim 0.15$ nm - 0.00015 nm

Taille d'un atome

Hulse et Taylor

Pulsar 1913+16 découvert en 1974

Période du faisceau radio T = 59 ms

précision meilleure que horloges atomiques!

2004 The Trustees of Amherst College. www.amherst.edu/ ~gsgreenstein/progs/animations/pulsar_beacon/

Pulsar du Crabe

Hulse et Taylor

 ΔT = 76.10⁻⁶ s/an, Δa = -3,5 m/an coalescence dans 300.000.000 ans

Pour h = 10⁻²¹ faut détecteur avec L = milliers de km

Détection des ondes gravitationnelles

Miroir de recyclage: L = 3 km → L effectif = 3000 km

Virgo (Pise)

Premier événement (annonce: 14/09/15) !

Système binaire de 2 trous noirs

30 M_{sun} + 35 M_{sun} = 62 M_{sun} (trou noir) + 3 M_{sun} (ondes grav.)

d = 440 Mpc, soit z=0.09 (à partir de amplitude)

Prouve existence de

- Ondes gravitationnelles
- Trous noirs de 30 M_{sun}

Durée de l'événement ~ 0.1 s

Evénement LIGO-VIRGO (14/08/17)

Observation à 3 détecteurs

de GW 170814 (BH+BH)

LIGO Hanford

LIGO Livingston

Virgo

Premier événement multi-messager (17/08/17) Normalized amplitude **GW 170817** 500 LIGO-Hanford Alerte automatique 1 détecteur (H) 100 + retrouvé dans 2è détecteur (glitch) 50 Time (seconds) -10-8 -2 500 500 -LIGO-Livingston raw data LIGO-Livingston Frequency (Hz) Frequency (Hz) 100 100 50 50 500 Signal intense et long Virgo Alerte LIGO-VIRGO à 13h21 100 40min seulement après événement 50 -20 -10-30

Time (seconds)

Premier événement multi-messager (17/08/17)

Premier événement multi-messager (17/08/17)

Ondes gravitionelles

- ⇒ Masses
- ⇒ binaire étoiles à neutrons (NS-NS)

Contrepartie γ

⇒ confirmation que (NS-NS) engendrent des GRB courts

Courbe de lumière optique

⇒ confirmation que (NS-NS) engendrent kilonova

⇒ Identification de production d'or de l'univers ! (r-process dans environnement riche en neutrons)

Note: 1.7s entre onde grav. et γ après d=40Mpc \Rightarrow vitesse ondes gravitationnelles ~ c

⇒ exclusion de nombreux modèles de gravité modifiée

Détecteurs terrestres

pour couvrir

- coalescence de trous-noirs massifs ($10^3 M_{o}$)
- naines blanches
- \rightarrow freq. plus basse
- \rightarrow dans l'espace !

LISA

Selectionné par l'ESA en juillet 2017

L = 5 millions km

LISA pathfinder (terminé en juillet 2017): Démonstrateur de sensibilité (masses tests en chute libre, pour LISA)

NATHALIE PALANQUE-DELABROUILLE JACQUES DELABROUILLE

SCIENCE

Seuil 🛄

Les nouveaux messagers du cosmos

Energie: largeur de la gerbe

Nb de photo-électrons reçus → nb d'électrons N_e émis selon profondeur X d'atmosphère traversée

 $E_{em} = (2 MeV / g. cm^{-2}) \int N_e(X) dX$

 $E_{tot} = E_{em} (1+15\%)$ pour tenir compte de énergie emportée par μ , ν , hadrons.

62

Quasars et Microquasars

QUASAR 3C 223

MICROQUASAR 1E1740.7-2942

Déplacements supraluminiques !?

10⁴ u.a. = 2 mois lumière

Déplacements supraluminiques !?

Emission du 1^{er} photon en A

Emission du 2nd photon en B (AB = $\beta c \Delta t_e$) 1^{er} photon est alors en D (AD = $c \Delta t_e$)

 $AC = \beta c \Delta t_e \cos \theta$

Séparation en projection sur le ciel: CB = ABsin θ = $\beta c \Delta t_e sin\theta$

Différence entre les temps d'arrivée: $t_2 - t_1 = DC/c = (AD-AC)/c$ $= \Delta t_e (1 - \beta \cos\theta)$

Vitesse apparente $\beta_{app} = CB/(t_2-t_1) = \beta \sin\theta / (1 - \beta \cos\theta)$

Markarian 421 : blazar « voisin »

