Astroparticule 3/3

Nathalie PALANQUE-DELABROUILLE CEA-Saclay Bénodet, novembre 2017

1

Astroparticule

- 1) Approche multi-messagers Rayons cosmiques (historique, propriétés)
- 2) Rayons cosmiques (état des lieux, derniers résultats) Sursauts gamma Ondes gravitationnelles

- 3) Neutrinos
 - Astronomie neutrino
 - Neutrinos et cosmologie

Astroparticule 3/3

Astronomie neutrinos à haute énergie

- Saga solaire

 détection des neutrinos du soleil
 oscillations neutrinos
- Neutrinos atmosphériques (et autres?)
 - Neutrinos dans l'Univers
 - Neutrinos et supernovae
 - Neutrinos et cosmologie

Astronomie multi-messagers

Astronomie multi-messagers

Propagation en ligne droite Photons mais proviennent surtout des milieux ténus

libre parcours moyen d'un v = ∞

2 s pour sortir

libre parcours moyen d'un photon = 1 cm

100 000 ans pour sortir

Neutrinos

Propagation quasi infinie Propagation en ligne droite MESSAGER IDEAL milieux denses lointains

Blazars

<u>Emission basse énergie</u> (rayons X) : émission synchrotron des e⁻ du jet

> Emission haute énergie (rayons γ): - auto-compton (electromagnétique) ? - désintégration π^0 (hadronique) ?

Blazars

<u>Emission haute énergie</u> (rayons γ):

- auto-compton (electromagnetique)?
- désintégration π^0 (hadronique) ?

Sources de v

de haute énergie !

Spectre neutrinos

Spectre neutrinos

N. Palanque-Delabrouille — July 7, 2017 — SFP , 2017

Section efficace d'interaction

pour E (β decay) ~ 1MeV
$$\sigma$$
 ~ 10⁻⁴⁶ m² 10

« Télescope » à neutrinos

Très faible section efficace d'interaction des v Très faibles flux à grand E

Oscillations donc v_e , v_μ et v_τ en proportion égale au niveau de la Terre

Les μ et τ produits peuvent traverser une grande quantité de matière (plusieurs km)

⇒ La Terre comme détecteur !

« Télescope » à neutrinos

Effet Cerenkov

progression lente

(effet Doppler)

Effet Cerenkov

progression rapide

(onde de choc) v lumière = c/n v particule ~ c $\cos \theta = (c/n)/c$ $\theta = 1^{\circ} \text{ air}$ 42° eau c/n θ С

Effet Cerenkov

analogie sonore

Mur du son Bang supersonique

« Télescope » à neutrinos

« Télescopes » à neutrinos

Antares / KM3Net 0.1 km2 × 400m meilleure résolution angulaire (0.2°)

Ice Cube 1 km² x 1 km meilleure sensibilité (moins d'absorption)

« Télescopes » à neutrinos

- -- 1

« Télescopes » à neutrinos

Scintillement du télescope :

radioactivité naturelle

bioluminescence!

(c) DeepSeaPhotography.Com

Muon montant : signature d'un v_{μ}

(IC22)

Cascade : signature d'un v_e

Energie = 134 TeV

arXiv: 1101.1692

(IC22)

A l'ombre de la lune

(IC40+IC59)

reconstruction des traces

Recherche de v GZK (très haute énergie)

50% énergie perdue par $p_{UHECR} + \gamma_{CMB} \rightarrow v_{HE}$

Important pour identification origine des UHECR !

Recherche de v GZK (très haute énergie)

Important pour identification origine des UHECR !

2 premiers événements à E ~ 1PeV (IceCube)

PRL 111, 021103 (2013)

E trop basse pour v $_{GZK}$ E trop haute pour v $_{atm}$

⇒ Origine astrophysique?

Astronomie neutrinos

Astronomie multi-messagers

- Corrélations à haute énergie avec émetteurs de rayons cosmiques
- Comparison spectre en énergie avec celui de photons haute-énergie

Astronomie multi-messagers

Excellent ajustement spectral avec γ -rays de Fermi (GeV) Pas de corrélation claire avec classes connues Origine commune? ni galactiques Blazars (hypohtèse pour Fermi)? SNR \vdash IceCube combined (2015) 10-6 Fermi IGRB (2014) $E^2 \phi_{v+\overline{v}}$ (GeV cm⁻² s⁻¹ sr⁻¹) 10-7 ni extragalactiques 10⁻⁸ 10-9 10-3 100 101 10^{2} 103 104 10^{-2} 10^{-1} E(TeV)

AGN

Astronomie multi-messagers temporelle

Etudes multi-messengers de sources variables variables ou transitoires

- Augmentation de sensibilité & potentiel de découverte (fond réduit)
- Augmentation de signification statistique (détection jointe)

Astroparticule 3/3

- Astronomie neutrinos à haute énergie
 - Saga solaire

0

- détection des neutrinos du soleil
- oscillations neutrinos
- Neutrinos atmosphériques (et autres?)
- Neutrinos dans l'Univers
 - Neutrinos et supernovae
 - Neutrinos et cosmologie

Qu'est-ce qui fait briller le Soleil ?

ou : Quel est l'âge du Soleil ?

2000+: datation d'éléments radioactifs

→ t_{Soleil} ~ t_{Terre} ~ 4.6 milliards d'années

• Source d'énergie du Soleil: Chimique ?

Sur Terre, chaleur reçue F ~ 1400 W/m² $d_{\text{Terre-Soleil}} = 150.10^{6} \text{ km}$ Luminosité L = $4\pi d^{2}F$ L ~ 3.10^{26} W

durée de vie: $t_{Soleil} \sim N_p \times E_l / L \sim 10^{57} \times 1eV / 3.10^{26} W$ \longrightarrow ~10 000 ans !

Qu'est-ce qui fait briller le Soleil ?

ou : Quel est l'âge du Soleil ?

2000+: datation d'éléments radioactifs

→ t_{Soleil} ~ t_{Terre} ~ 4.6 milliards d'années

Source d'énergie du Soleil: Gravitationnelle ?

E pot.
$$U = -\int_{0}^{R} \frac{GM(r)dm}{r} = -\frac{3GM^{2}}{5R}$$

Luminosité L = $4\pi d^2 F$ L ~ 3.10²⁶ W

durée de vie: †_{Soleil} ~ U / L ~ (7.10⁻¹¹)(2.10³⁰)²/(7.10⁸) / 3.10²⁶ W → ~10 millions d'années

Qu'est-ce qui fait briller le Soleil ?

ou : Quel est l'âge du Soleil ?

• 2000+: datation d'éléments radioactifs

→ t_{Soleil} ~ t_{Terre} ~ 4.6 milliards d'années

• Source d'énergie du Soleil: Nucléaire ?

En. de liaison par nucléon B ~ 1MeV

Luminosité L = $4\pi d^2 F$ L ~ 3.10²⁶ W

durée de vie: t_{Soleil} ~ N_p × B / L ~ 10⁵⁷ × 1MeV / 3.10²⁶ W → ~10 milliards d'années

Neutrinos solaires

1960: Bahcall

Homestake Ray Davis

650 tonnes de C_2Cl_4

 $1v/jr (10^{18} \text{ traversant cuve})$ $3^{7}Cl + v_{e} \rightarrow 3^{7}Ar + e^{-1}$ radioactif $\tau_{1/2} \sim 1 \text{ mois}$

> « **Recherche** de v en provenance du Soleil » (1968)

 Expérience temps-réel et directionnelle: (Super) Kamiokande

 $v_e + e^- \rightarrow v_e + e^$ seuil = 6.5 MeV (1986)

SuperKamiokande

-origine solaire confirmée

- déficit persistant

$$\frac{data}{modèle} = 0.4$$

Neutrinos solaires: une piste

•
$$|v_i(t)\rangle = |v_i(t=0)\rangle e^{-iE_i t}$$
 propagation état propre (i=1,2)
• $E_i = \sqrt{p^2 + m_i^2} \approx p(1 + m_i^2/2p^2) \approx E + m_i^2/2E$ pour v relativiste (m \ll p~E),
au 1^{er} ordre en m_i²
• $|v(t)\rangle = e^{-iEt} \left(\cos\theta |v_1\rangle e^{-im_1^2 t/2E} + \sin\theta |v_2\rangle e^{-im_2^2 t/2E}\right)^{(1)} |v_e\rangle = \cos\theta |v_1\rangle + \sin\theta |v_2\rangle$
 $|v(t)\rangle = e^{-iEt - i(m_1^2 + m_2^2)t/4E} \left(\cos\theta |v_1\rangle e^{i\delta m^2 t/4E} + \sin\theta |v_2\rangle e^{-i\delta m^2 t/4E}\right)$
où $\delta m^2 = m_2^2 - m_1^2$

• Probabilité qu'un v_e émis par le Soleil soit encore un v_e au niveau de la Terre $P_{v_e}(t) = \left| \left\langle v_e | v(t) \right\rangle \right|^2 = \left| \cos^2 \theta \; e^{i \delta m^2 L/4E} + \sin^2 \theta \; e^{-i \delta m^2 L/4E} \right|^2$

Neutrinos solaires: une piste

•
$$P_{\nu_e}(t) = \left| \left\langle \nu_e | \nu(t) \right\rangle \right|^2 = \left| \cos^2 \theta \, e^{i \delta m^2 L/4E} + \sin^2 \theta \, e^{-i \delta m^2 L/4E} \right|^2$$

$$P_{v_e}(t) = \left| e^{-i\delta m^2 L/4E} + 2i\cos^2\theta \sin\frac{\delta m^2 L}{4E} \right|^2$$

 $P_{v_e}(t) = \cos^2 \frac{\delta m^2 L}{4E} + \sin^2 \frac{\delta m^2 L}{4E} \cos^2 2\theta$

 $P_{v_e}(t) = 1 - \sin^2 \frac{\delta m^2 L}{4E} \sin^2 2\theta$

$$sin^2\theta = 1 - cos^2\theta$$

 $sin\theta = (e^{i\theta} - e^{-i\theta})/(2i)$

$$P_{v_e}(t) = \left| \cos \frac{\delta m^2 L}{4E} - i \sin \frac{\delta m^2 L}{4E} + 2i \cos^2 \theta \sin \frac{\delta m^2 L}{4E} \right|^2$$

$$\cos 2\theta = 2\cos^2\theta - 1$$

Pontecorvo 1958 : « une piste pour réduire le flux des v solaires… »

Note:
$$\delta m = 0 \rightarrow pas$$
 d'oscillation 44

Neutrinos solaires: une piste • $P_{v_e}(t) = 1 - \sin^2 \frac{\delta m^2 L}{4E} \sin^2 \frac{2\theta}{\Lambda}$ Pve 0.8 $\sim 1/\Delta m^2$ 0.6 0.4 fréquence 0.2 $\sin^2 2\Theta$ $P_{\nu\mu}$ amplitude 0 L/E $\Rightarrow 1 - \frac{1}{2} \sin^2 2\theta \quad \text{en moyenne si} \\ L_{\text{Terre-Soleil}} \gg L_{\text{osc}} = 4\pi E/\delta m^2 \quad (= 4\pi \hbar c E/\delta m^2 c^4)$ Faut détecter les différentes saveurs de v !

Neutrinos solaires: énigme résolue

SNO: mille tonnes de D_2O \implies Sensibilité aux différentes saveurs de v

v_x + e ⁻ \rightarrow v_x + e ⁻	Diffusion élastique (DE)
$v_e + d \rightarrow e^- + p + p$	Courant chargé (CC)
$v_{x} + d \rightarrow v_{x} + p + n$	Courant neutre (CN)

Radiochimique : CC uniquement sur Cl ou Ga, v_e Cerenkov: DE avec sensibilité aux v_{μ} et v_{τ} $(tau \times v_e = 6 \times tau \times v_u \text{ ou } v_\tau)$

2000m sous terre

Neutrinos solaires: énigme résolue

Nobel 2002 (Davis, Koshiba)

- Astronomie neutrinos à haute énergie
- Saga solaire

 détection des neutrinos du soleil
 oscillations neutrinos
- Neutrinos atmosphériques (et autres?)
- Neutrinos dans l'Univers
 - Neutrinos et supernovae
 - Neutrinos et cosmologie

Neutrinos atmosphériques

Dépendance angulaire au niveau du détecteur

Détection possible d'oscillations si L_{osc} (= $4\pi\hbar cE/\delta m^2 c^4$) du même ordre de grandeur que diamètre Φ de la Terre

> Note: pour $E \sim 1GeV$ et $\delta m_{12}^2 \sim 7.94 \ 10-5 \ eV^2$, $L_{osc} \gg \Phi_{terre}$ donc condition non remplie pour cas « solaire »

Neutrinos atmosphériques

Toutes les facettes du neutrino

$$\begin{bmatrix} \delta m_{12}^2 \sim 7.94 \ 10^{-5} \ eV^2 \\ \theta_{12} \sim 34^{\circ} \end{bmatrix} \theta_{12} \text{ solar neutrino oscillation} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} \theta_{13}?$$

Neutrinos de réacteurs: Daya Bay

Far detector

(Mars 2012)

- 6 réacteurs nucléaires
- Mesures relatives pour réduire les systématiques corrélées (2 sites proches, 1 site lointain)
- Détecteurs multiples sur chaque site pour réduire systématiques non corrélées (2 par site proche, 4 sur site lointain)

Neutrinos de réacteurs: Daya Bay

Scintillateurs liquides au Gd

Détection des neutrinos : Coïncidence en temps, espace et énergie

Neutrinos de réacteurs: Daya Bay

Bilan oscillations des $\boldsymbol{\nu}$

- m, non nulle (oscillations)
- Mesure δm^2 et non m
 - → 2 scenarios de hiérarchie des masses

Bilan oscillations des $\boldsymbol{\nu}$

Mesure des masses ?

- v atmosphériques $\Rightarrow m_{\min} = \sqrt{\delta m_{23}^2}$ au moins 1v à m>0.05 eV
- Limites en laboratoire (désintégration β du Tritium): m(v_e) < 2 eV (KATRIN → 0.2 eV)

Un neutrino stérile?

2011: Nouveau calcul du flux $\overline{v_e}$ des réacteurs (à partir de mesure des spectres de e⁻ provenant de ²³⁵U, ²³⁹Pu, ²⁴¹Pu)

- \rightarrow augmentation de ~3% des flux de v prédits
- → Observation d'un déficit ("anomalie réacteurs")

Un neutrino stérile?

"L'anomalie Gallium"

```
Sources radioactives intenses de v_e (<sup>51</sup>Cr et <sup>37</sup>Ar) dans GALLEX, SAGE
```

Détection des v_e par ⁷¹Ga + $v_e \rightarrow {}^{71}$ Ge + e^-

Mesures systématiquement
 inférieures aux prédictions (2.7σ)
 → compatible avec n sterile
 de masse ~1 eV

A quel point maîtrisons-nous les efficacités des méthodes radiochimiques?

Astroparticule 3/3

- Astronomie neutrinos à haute énergie
- Saga solaire
 - détection des neutrinos du soleil
 - oscillations neutrinos
- Neutrinos atmosphériques (et autres?)
- Neutrinos dans l'Univers
 - Neutrinos et supernovae
 - Neutrinos et cosmologie

Evolution stellaire

Combustion cœur de l'étoile

 → Augmentation masse du cœur de Fe (vs. pression de dégénérescence des e⁻)

Masse cœur > 1.4 Msoleil

 → Effondrement catastrophique (stoppé par dégénérescence des n)

galaxie Iointaine

1987A

23 février 1987: ~20 neutrinos en provenance de SN1987A en ∆t=10s (détecteurs Kamiokande et IMB)

Vitesse V des v d'énergie E : $V = \beta c = c \sqrt{1 - (mc^2 / E)^2}$ où $E = \gamma mc^2$ et $\gamma = \frac{1}{\sqrt{1 - (V / c)^2}}$ Donc durée t du trajet : $t = \frac{d}{V} \approx \frac{d}{c} \left(1 + \frac{1}{2} \left(mc^2 / E\right)^2\right)$

Donc contrainte sur m_v à partir de $\Delta t/\Delta E$:

$$\frac{dt}{dE} = \frac{d}{c} \left(\frac{mc^2}{E}\right) \left(\frac{-mc^2}{E^2}\right) = -\frac{1}{E} \frac{d}{c} \left(\frac{mc^2}{E}\right)^2$$

1987A

23 février 1987: ~20 neutrinos en provenance de SN1987A en ∆t=10s (détecteurs Kamiokande et IMB)

Donc contrainte sur m_v à partir de $\Delta t/\Delta E$: $\Delta t = -\frac{\Delta E}{E} \frac{d}{c} \left(\frac{mc^2}{E}\right)^2$

Univers

Corps noir en expansion, $T_{\gamma} \searrow (2,7K \text{ aujourd'hui})$ $T_{v} \propto T_{\gamma} \text{ donc } T_{v} \searrow (1,9K \text{ aujourd'hui} = 0,2 \text{ meV})$

Neutrinos massifs mais m_v petit 60 meV < Σm_v < 6 eV

 \rightarrow au moins 1 neutrino non-relativiste aujourd'hui

 \rightarrow neutrinos relativistes durant essentiel de histoire de l'Univers

Neutrinos & large-scale structures

Neutrinos se propagent à v=c ("free stream") jusqu'à t_{nr}

- $\Rightarrow \delta_v \sim 0$ jusqu'à t_{nr}
- $\Rightarrow \quad \text{Croissance des structures freinée pour échelles } \lambda < ct_{nr} \\ \text{Croissance des structures normale pour échelles } \lambda > ct_{nr} \\ \end{array}$
- Neutrinos lourds (t_{nr} tôt)
 Suppression forte sur petites échelles

 $m_{_{\rm V}} \sim keV \Rightarrow$ perturbations lissées sur distances ~ galaxies naines

Neutrinos légers (t_{nr} tardif)
 Suppression faible sur grandes échelles

 $m_v \sim eV \Rightarrow$ perturbations lissées sur distances ~ amas de galaxies

- z = 15 ($t_{lookback}$ = 13.5 Gyr) \rightarrow 0
- 3 espèces: Baryons Dark matter Neutrinos + étoiles (ex-baryons)
- >10 Million hrs at TGCC

Boxsize = 20 Mpc/h, LambdaCDM + 0.8 eV neutrinos, z = 13.42 Gas Dark matter

Neutrinos

Stars

z = 0 - 5 t = 13.8 milliards d'années - 1.1 milliards d'années

z = 1100 t = 380.000 ans

Conclusions ?

Vaste domaine rayons cosmiques sursauts gamma neutrinos de haute énergie ondes gravitationnelles

De grandes découvertes et avancées ces dernières années

Un domaine en plein essor

Conclusion

Disparition du carburant

- \rightarrow compression du cœur
- \rightarrow T augmente
- → Déclenchement réaction suivante (si masse suffisante pour atteindre la température nécessaire)

En l'absence de réaction nucléaire, pression de dégénérescence quantique

Principe d'exclusion de Pauli: deux fermions ne peuvent pas se trouver dans le même état

« énergie incompressible » $\epsilon_F \sim n^{2/3} / m$

donc d'abord

pression de dégénérescence due aux électrons

puis pression de dégénérescence due aux neutrons

Combustion de Si

 → augmentation masse du cœur de Fe (pression de dégénérescence des e⁻)
→ augmentation densité

Capture électronique: $p + e^- \rightarrow n + v$

Diminution de pression de dégénérescence (ϵ_F) des e⁻

1987A

23 février 1987: ~20 neutrinos en provenance de SN1987A en ∆t=10s dans les détecteurs Kamiokande et IMB

New South Pole Station

12-47

First IceCube string

Home Picker

Stiles Past

140<u>0</u>m

2400m

IceCube Laboratory

AMANDA

1500 m

2000 m [not to scale]

« Télescopes » à neutrinos

Intercalibration possible sur 0.6π steradians