

Calcul de la structure porteuse de l'absorbeur					
		Calculs dyr	namiques		
Analyse mo mode fonda (déplacemer Mode n°2 5 (déplacemer Autres mode	dale: amental ↔ Int latéral du 6Hz Int vertical de s jusqu'à la	2,9Hz nez de l'abs e l'absorbeu fréquence d	sorbeur – tor r en phase a de coupure à	sion du FAS vec le FASS) 34 Hz	S selon Z)
<mark>Réponse à l</mark> Le CERN es	un séisme: t en zone s	: sismique m	odérée (zo	ne Ib):	K×
Probabilité d'occurrence par an	Magnitude (échelle de Richter)	Accélération équivalente	Accélérations induites	Déplacements induits	Contraintes induites (Séisme + Statique)
10 ⁻³ /an	6,1	1,5 m/s²	$\begin{array}{c} X=8m/s^2\\ Y=5,6m/s^2\\ Z=7,5m/s^2\\ (Nez \ absorbeur) \end{array}$	X=18mm Y=5,6mm Z=3,2mm _(Nez absorbeur)	Bas pied 191 MPa Interface FASS 145 MPa
10 ⁻² /an (1)	5,5	0,7 m/s²		X=9mm	
In the statistic survey of the state of the	⇔(1): sur 2(Jean Peyré) ans, probabi	lité d'occurren	ce de 20% Ecole Technique	de base des détecteurs Oléron 2015

