

SOMMAIRE

1 LE FAISCEAU DE PARTICULES ACCELEREES

Caractéristiques élémentaires du faisceau

Nécessité des diagnostics de faisceau

Les mesures à effectuer

Interaction du faisceau avec la matière

2 MESURE DE L'INTENSITE DU FAISCEAU

Capteurs destructifs: détecteur à émission secondaire, Coupelle de faraday

Capteurs non destructifs:

Champ électromagnétique associé au faisceau

Moniteur à courant de paroi, transformateurs de courant, Electrode capacitive.

3 MESURE DE LA POSITION DU FAISCEAU

Electrode électrostatique, électrode bouton

Electrode stripline

Détecteur inductif

Détecteur magnétique

5 MESURES TRANSVERSES

Profils transverses:

- a) Capteurs destructifs: scintillateurs, chambres à émission secondaire, wire scanner, chambres à ionisation de gaz
- b) Moniteurs à ionisation du gaz résiduel
- c) Mesure par fluorescence du gaz résiduel
- d) Utilisation du rayonnement synchrotron

Mesure de l'émittance

6 MESURES SPECIFIQUES

Mesure de longueur de bunch : camera à balayage de fente Mesure de la lumière : camera CCD, photomultiplicateur

7 MONITEURS DE PERTES DE FAISCEAU

Profils transverse

Sensitivities measured with protons with previous screen holder, normalised for 7 px/\sigma

Туре	Material	Activator	Sensitivity
Luminesc.	CsI	TI	6 10 ⁵
44	Al ₂ O ₃	0.5%Cr	3 107
	Glass	Ce	3 109
44	Quartz	none	6 109
OTR [bwd]	Al		2 1010
**	Ti		2 1011
**	С		2 1012
uminesc. GSI	P43: Gd ₂ O ₂ S	Tb	2 107

Rhodri Jones - CERN Beam Instrumentation Group

Introduction to Beam Instrumentation - CAS2007

Principe :

EN

VE HO

GMC

300.01

200.0

100.0

0.0

600.0+

400.0

200.0

0.0

Pas : 1.5

Pas : 1.0

OFFSET

OFFSET

détection du courant électrique créé par les électrons secondaires émis par l'impact du faisceau sur des fils organisés en plans verticaux et horizontaux

Capteur multicouches Montage en ultravide

Grille H + grille V Dépôt: or Substrat: alumine Épaisseur de 3mm Pas: centre 0.5 mm Milieu 1 mm Bord 2 mm

Profils transverses

Profils transverses

Profileurs à émission secondaire

Capteur type « ruban » Matériau nickel

épaisseur: 20 µm ; largeur ruban: 1mmm

Support: alumine (bon isolement électrique)

Capteurs à fils de tungstène: Diamètre:30 µm Substrat: epoxy <u>Utilisation</u> : mesure du profil transverse et de la position du centre de gravité du faisceau d'ions

Principe :

détection du courant électrique créé par les électrons secondaires émis par l'impact du faisceau sur des fils organisés en plans verticaux et horizontaux (voir fiche suivante)

Performances :

- précision en position : 0,5mm
- résolution : entre 0,5 et 1,5 mm selon distance entre fils
- intensité maximale du faisceau (rupture des fils):
 < 1 MeV/u : 1 µAp autour de 10MeV/u : 10 nAp
 - vers 100 MeV/u : 100 nAp
- intensité minimale : 1 nAp

Profils transverses

Profileurs à ionisation du gaz résiduel

<u>Utilisation</u> : mesure du profil transverse et de la position du centre de gravité du faisceau d 'ions

Principe :

détection du courant électrique créé par la ionisation du gaz résiduel dans la chambre à vide et amplifié par une galette de microcanaux (voir fiche suivante)

Performances :

- précision en position : 0,5mm
- résolution :1 mm
- intensité maximale du faisceau : > 100 µAp
- intensité minimale : 1 nAp

Detection

- secondary particle shower detected outside the vacuum chamber using a scintillator/photo-multiplier assembly
- Secondary emission current detected as for SEM grids
- Correlating wire position with detected signal gives the beam profile

Mouvement pendulaire du fil

Profileur

Wire scanner à translation linéaire

Profileur

Wire scanner à translation linéaire

Montage fil carbone Diamètre 33 microns

Profileur

Wire scanner à translation linéaire

Wire scanner à fil tournant

Profileur

<u>Utilisation</u> : mesure du profil transverse du faisceau et de la position du centre de gravité

Principe :

- par sa forme et son orientation, le fil balaie le plan vertical puis horizontal à chaque tour
- mesure du courant électrique recueilli sur le fil tournant (charges électriques du faisceau plus électrons secondaires)
- déduction du profil et de la position par calcul

<u>Performances</u> : - supporte de fortes intensités de faisceau (>100µA continu)

- intensité minimale :> 100nAe
- précision/résolution en position : 0,5mm

270

909

180°

<u>Utilisation</u> : mesure du profil transverse et de la position du centre de gravité du faisceau d 'ions

Principe :

détection sur des plans de fils du courant électrique créé par la ionisation du gaz circulant dans la chambre

Performances :

- précision en position : 0,5mm
- résolution :1 mm
- intensité maximale du faisceau : < 1 nAp
- intensité minimale : 10³ ions/s

EMITTANCEMETRE DE TYPE SCANNER

Profils transverses

Luminescence

Profils transverses

Interaction: faisceau proton / gaz résiduel (Hydrogène: 2.10⁻³ Pa)

82 KeV 2 x10⁻⁵ faisceau global

Principe d'une Caméra à Balayage de Fente

Caméra à Balayage de Fente

Principe d'une Caméra CCD Intensifiée refroidie

ROLE DES DETECTEURS DE PERTES DE FAISCEAU

- Couplage au dispositif de sécurité de l'accélérateur (déclenchement des alarmes)
- Aide à la protection contre l'activation à long terme des structures de l'accélérateur
- Par conséquent: Aide au réglage de l'accélérateur; optimisation faisceau

EFFETS DES RADIATIONS IONISANTES

- Systèmes mécaniques: échauffement excessif, détérioration des propriétés physiques
- Systèmes cryogéniques: apport excessif de calories => Quench
- Systèmes optiques: détérioration de la transmission de la lumière (fibres optiques, verres..)
- Systèmes électroniques: dysfonctionnement; détérioration définitive
- Systèmes de mesure: augmentation notoire du bruit de fond de la mesure
- Sur le personnel: exposition lors des périodes de réparation ou de maintenance (neutrons)

SOURCE DE RADIATIONS IONISANTES

- Erreurs de focalisation ou d'alignement du faisceau. Création de «Halo» autour du faisceau
- Production de rayons X par les dispositifs d'accélération
- Diagnostics interceptifs, objets «étrangers» sur le trajet du faisceau, strippers de faisceau
- Radiation synchrotron
- Scattering sur le gaz résiduel

PRINCIPE DE LA DETECTION

Mesure sur un intervalle de temps déterminé. Localisation du nombre de particules perdues

TYPES DE PERTE DE FAISCEAU

- Pertes rapides de faisceau: Détection du niveau de perte nécessaire. En général localisation des pertes non nécessaires (cause: alimentation, pompe à vide , kicker..)

- Pertes lentes de faisceau:

Détecteur placé à l'extérieur du tube à vide: Utilisation des principes physiques déjà vus Autre méthode: Mesure différentielle entre les diagnostics de faisceau de l'accélérateur.

PLICS: PANOFSKY LONG IONISATION CHAMBERS

SLAC 1966:

- Câble coaxial RG-319 /U rempli avec Ar/CO2, longueur: 3.5 km, monté à 2 m du tube à vide

- Mesure de position: Mesure de l'intervalle de temps entre le pulse direct à une extrémité et le pulse réfléchi à l'autre. Résolution initiale: 30 ns (~ 8m)

- Très nombreuses améliorations pour améliorer la résolution: SLC, AGS, CERN..

SHORT IONISATION CHAMBERS

-CHAMBRE A Ionisation (remplissage: air) réparties le long de la structure accélératrice: CERN PS, TEVATRON..

COMPTEUR A SCINTILLATION

- Scintillateur plastique couplé à un P.M. (Utilisation temporaire)

- LAMPF: « Paint can » Beam Loss Monitor: Plastique remplacé par un liquide (huile) dans un réservoir de 500 cm3. (Temps de montée : 10ns, dynamique: 10⁵). Sensibilité meilleure que les chambres à ionisation mais technologie liée à l'utilisation des P.M.: alimentations stabilisées, intercalibration des moniteurs nécessaire.

SOLID STATE ION CHAMBERS (PIN Diodes)

- Chambre à ionisation à l'état solide : diode PIN polarisée en inverse
- Surface sensible: 100 mm² , zone dépletion: 100 à 300 µm (Siemens, HAMAMATSU)

-Amélioration : 2 diodes montées en coincidence Exemple:

- Détection des pertes de protons sur HERA

- La coincidence permet de diminuer la contribution due aux photons résultant des pertes d'e- circulant dans l'anneau voisin.

Taux de comptage max: 10.4 MHz (Bergoz)

Operating principle

CRYOGENIC MICROCALORIMETERS

- LEP/ CERN 1992: Un thermomètre (résistance carbone) mesure l'élévation de température d'un « mini- cryostat » contenant de l'hélium liquide chauffé par les pertes de faisceau (pas de création de charges électriques par les particules perdue

Et beaucoup d'autres détecteurs de perte faisceau...

Exemples de moniteurs de perte de faisceau

Patrick AUSSET - Ecole Accelerateur IN2P3 - Instrumentation et Diagnostics de faisceau - 4-10 décembre 2011

Evolution des salles de commande

Références bibliographiques

[1] "Particle Physics booklet" extrait de « Review of Particle Physics ». K. Nakamura et al (Particle Data Group), Journal of Physics G37, 075021 (2010)

[2] « Stopping power and ranges for protons and alpha particles » ICRU Report N° 49 (1993)

[3]"The density Effect for the Ionisation Loss of Charged Particle in Various Substances". R.M. Sternheimer, S.M. Seltzer,

M.J. Berger. Atomic Data and Nuclear Data Tables 30, 261 (1984)

[4] S.M. Seltzer, M.J. Berger, Int. J. of Applied Rad. 35, 665 (1984).

[5]"The secondary emission detector" Th Aggson . Laboratoire de L'accélérateur Linéaire. Université de Paris ECOLE NORMALE SUPERIEURE 14 fevrier 1962.

[6]"Simulation of secondary electron emission based on a phenomenological probabilistic model". M.A. Furman. LBNL – 52807, SLAC-PUB-9912

[7] <u>http://hadron.kek.jp/~accelerator/TDA/tdr2003/chap2/2.3.8.2.pdf</u>

[8) « Emission secondaire de métaux purs». R. Warnecke. Journal de Physique juin 1936

[9] « Theory of Secondary Electron Emission by High Speed Ions ». E. J Sternglass. The Physical Review –

Second series, Vol. 108, $N^{\circ}1$.

[10] http://hyperphysics.phy-astr.gsu.edu/hbase/tables/photoelec.html#c1y,

[11] "Sharp reduction of the secondary electron emission yield from grooved surface". M.T.F. Pivi, F.K. King, R.E. Kirby,

T.O. Raubenheimer, G. Stupakov. SLAC – F. Le Pimpec. PSI. -SLAC-PUB- 13020 Nov 2007

[12]"Recalibration of a wall-current monitor using a Faraday cup for the KEK B injector LINAC". T. Suwada.

PAC. New York 1999.

[13] Frontiers of particle Beams; observation; diagnosis and correction. Lecture Notes in Physics Proceedings 343.

Anacapri 1988. Editeurs : Month et Turner. Springer – Verlag

[14] "Beam diagnostics". Uli Raich . Cern Accelerator School 2005

[15]"Introduction to beam instrumentation" Rhodri Jones CAS 2007

[16]"Beam Position Monitors: Principle and realisation" P. Forck, P. Kowina, D. Liakin, CAS May 30 th, 2008

[17]"Cavity beam position monitors" Ronald Lorenz. Beam Instrumentation workshop 1998. AIP conference proceedings n° 451

[18]"Comparison among signals processig for BPM" G. Vismara BIW 00.

[19] "Beam current monitors". J.C. Denard . Cern Accelerator School on beam diagnostics 2008

Ce fut un plaisir! Merci de votre courageuse attention!!

Annexes

Détecteurs interceptifs Passage des particules lourdes à travers la matière: perte d'énergie

La perte d'énergie moyenne (par unité de longueur), (average energy loss) est aussi appelée le pouvoir d'arrêt (stopping power). Elle est donnée par la formule de Bethe Bloch:

$$-\frac{dE}{dx} = 4\pi . N. r_e^2 . (m_e.c^2) . \frac{Z}{A} . \frac{z^2}{\beta^2} . \left[\frac{1}{2} . Ln\left(\frac{2.m_e.\beta^2 . \gamma^2 . T_e^{max}}{I^2}\right) - \beta^2 - \frac{\delta}{2} - \frac{C_e}{Z}\right]$$

 T_e^{max} : Energie cinétique maximum transférable à un électron lors d'une collision en MeV

 $\beta = \frac{v}{c}$ où v est la vitesse de la particule incidente; c: célérité de la lumière = 299 792 458 m/s

 β et γ : facteurs relativistes usuels

z: Etat de charge de la particule incidente

N: Nombre d'Avogadro = 6.022 1415 . 10²³

A: masse atomique du milieu absorbeur en g.mol⁻¹

dx: densité surfacique du milieu en $g.cm^2$

 $m_e.c^2:masse \ de \ l' \ electron.c^2 = 0.510\ 998\ 918\ MeV$

Z: nombre atomique de l'absorbeur $\frac{dE}{dx}:\frac{MeV.\,cm^2}{g}$

δ: facteur d'écrantage du champ électique de la particule incidente dans le milieu.δ est généralement faible aux élergies moyennes mais augmente avec la vitesse et la densité du milieu

 $\frac{C_e}{Z}$: terme de correction d'effet de couche atomique indiquant que les particules incidentes ont une probabilité très faible d'interagir avec les couches électroniques profondes à basse énergie

Les accélérateurs de particules à rayonnement synchrotron

Exemple: SOLEIL

Les accélérateurs de particules à rayonnement synchrotron

Exemple: SOLEIL

Anneau de stockage:

Circonférence: 354,1m Energie: 2,75 GeV Frévolution : 0,846 MHz I faisceau= 500 mA Anneau booster: Circonférence: 157m

LINAC:

500 mA dans 416 bunch 100 mA dans 8 bunch

Ligne de lumière:

43 lignes possibles:11 en operation: oct 200721 lignes sur onduleur

Les accélérateurs de particules

-1232 dipoles principaux cryogéniques: 1,9%; 8,33 T max; 11700 A. - 392 Qpôles Energie stockée dans les aimants: 11 GJ

- 8 cavités supra (4,5%) RF par faisceau. Champ 5 M V/m . 400 MHz
- Durée de remplissage: 4'20" par anneau. Durée accélération: 20'. Durée vie: 10 h
- Faisceau: 2808 bunches x 1,1.10¹¹ p/bunch 25 ns entre bunch Energie: 350 MJ
- Luminosité: 10³⁴ cm⁻².s^{-1.} 600 .10⁶ collisions par seconde

Les accélérateurs de particules

	LHC General Parameters	
Energy at collision	7	TeV
Energy at injection	450	GeV
Dipole field at 7 TeV	<u>8.33</u>	т
Coil inner diameter	56	mm
Distance between aperture axes (1.9 K)	194	mm
Luminosity	1	E34 cm- ² s- ¹
Beam beam parameter	<u>3.6</u>	E-3
DC beam current	<u>0.56</u>	А
Bunch spacing	7.48	m
Bunch separation	24.95	ns
Number of particles per bunch	<u>1.1</u>	E11
Normalized transverse emittance (r.m.s.)	3.75	μm
Total crossing angle	300	μrəd
Luminosity lifetime	10	h
Energy loss per turn	Ζ	keV
Critical photon energy	44.1	eV
Total radiated power per beam	<u>3.8</u>	kW
Stored energy per beam	<u>350</u>	MJ
Filling time per ring	<u>4.3</u>	min