Illustrations

- 1) 2 accélérateurs du CERN : Collisionneurs ppbar versus colisionneur e+e-SPS versus LEP
- 2) 'Overview' de deux installations/projets majeurs
 - 1) Le LHC
 - 2) Un grand projet aujourd'hui : ILC
- 3) Applications de l'interaction laserélectron

Le CERN : la Science à l'échelle Européenne depuis un demi-siècle

Qui travaille au CERN ?

Distribution of All CERN Users by Institute on 8 September 2004

Le CERN...... jusqu'à très récemment

- avec le PS comme point de départ, en opération depuis les années soixante, le CERN constitue aujourd'hui le plus grand complexe accélérateur du monde
- les synchrotrons du CERN accélèrent des types de particules différentes: électrons, positrons, protons, antiprotons et ions lourds
- LEP était un collisionneur électrons-positrons de 2 × 100 GeV

Alex Mueller

LEP : 27 km de circonférence 100 m de profondeur en moyenne

Mont Blanc

Une des grandes découvertes du CERN en collisionneur Ppbar le SPS

Découverte des bosons W[±] et Z⁰ au SPS

450 GeV protons 158 GeV/nucléon ions Pb 2πR = 6,9 Km 744 dipôles, 216 aimants de focalisation Section de la chambre à vide : 10 x 5 cm

Ecole IN2P3 : accélérateurs

Eric Baron 51

Les mesures de précision en collisionneur e+e- au CERN: Le LEP

Mesures de précision au LEP 1989-2001

Pourquoi mesurer précisement m_W?

Mais la précision a un prix ! Ex. :La mesure précise de l'énergie des faisceaux au LEP

➔ nécessaire pour réduire les incertitudes expérimentales :

Ces mesures se font en étudiant les trajectoires des particules chargées dans les champs magnétiques des électroaimants
 → Dépend de la longueur de la trajectoire (~27km)
 → Dépend des courants parasites dans les alims des électroaimants !

Les surprises du LEP

Mesure de l'énergie sur 24h

Le pb vient du fait que l'on ne mesure pas en permanence l'énergie des faisceaux ! → Il faut donc extrapoler sur plusieurs heures ...

Sensibilité aux courants parasites induits par le
TGV Paris-Genève !
→effet plus important que les marées terrestres !!!

~15mn

Variation de la longueur du LEP corrélée avec la quantité d'eau dans les montagnes

Avec le niveau d'eau dans le lac Lémant !!!

L'accélérateur ...

LE LHC

Le LHC : LE collisionneur du CERN

The Large Hadron Collider (LHC)

1312 TeV

Collisions at LHC

1027

Pb Pb

Cites | Larch 90 v1

Pour comparer...

Energie d'un proton dans le LHC : 7 TeV c'est à dire 7.10^{12} eV

1 eV c'est une quantité infime d'énergie 1 eV = $1.6 \cdot 10^{-19}$ J (c'est l'énergie d'un photon du laser infrarouge YAG)

$$\label{eq:mguepe} \begin{split} m_{guepe} &= 1g = 5.8\cdot 10^{32} \ eV/c^2 \ v_{guepe} &= 1m/s \
ightarrow E_{guepe} = 10^{-3} \ J = 6.25\cdot 10^{15} \ eV \end{split}$$

Ceci dit...dans le LHC... L'énergie totale dans les faisceaux est de : 10^{14} protons × $14 \cdot 10^{12}$ eV $\approx 1 \cdot 10^{8}$ J

qui correspond à

 $M_{poids \ lourd} = 100 \ T$ $V_{poids \ lourd} = 120 \ km/h$

Ce qui est exceptionnel dans le LHC, c'est qu'il concentre l'énergie dans un espace environ mille milliards de fois plus petit qu'une guêpe !

Concu dans les années 1980 Approuvé en 1994 Démarrage/accident en 2008 Redémarrage fin 2009

Suisse

evnin

Site de Prevessin

(France)

Les paquets de protons sont accéléres, guidés et focalisés tout au long des 27 km grâce à un système complexe d'aimants supraconducteurs.

Au total il y a 6228 aimants supraconducteurs

ATLAS, CMS, LHCb and ALICE quatre expériences pour tenter de répondre aux questions ...

La Construction du LHC

- Somme toute, la construction du LHC a avancé bien, malgré problèmes budgétaires et industriels
- Le premier faisceau a tourné en 2008
- Les Photos montrent des travaux relatifs à la contribution "exceptionnelle" de la France (contrats CEA-CERN-CNRS)
- mais beaucoup d'autres pays, y compris des "nonmember states" font de gros efforts
- String 2", section prototype contenant des aimant dipoles supraconducteurs

✓ "SSS 3"
 les Sections Droites
 Courtes contenant
 les Qudrupoles
 supraconducteurs
 focalisants

L'usine cryogénique > prototype (pompes et compresseurs pour hélium superfluide

Alex Mueller

ATLAS et CMS : les deux détecteurs géants du LHC

Vue du détecteur ATLAS au LHC

Le projet International Linear Collider

Buts :

•Machine à Higgs, machine à top

•Mesures de précisions pour essayer de mettre en défaut le modèle standard

•Recherche de nouvelle physique

Le problème avec les hautes énergies :

La probabilité qu'un électron interagisse avec un positron est en 1/Ebeam !

Faible émittance
Il faut la garder dans le LINAC de ~15km !
Contrôle micrométrique de la position des éléments du LINAC !

Simplify schematic view of the ILC

Туре	LEP200	ILC500	CLIC500
Vertical beam size in nm	4000	5.7	2.3
Total P MW	65	216	129.4
Luminosity 10**31 (%)	5	1500	1400
Interval between bunches ns	>>>	176	0.5
Gradient MV/m	8	31.5	100

De nombreux enjeux technologiques -> R&D accélérateurs nécessaire

Test Facilities (accélérateur dédiés aux développements des nouvelles techno pour l'ILC)

exemples	Deliverable	Date		
Optics and stabilisation demonstrations:				
ATF/Japon	Generation of 1 pm-rad low emittance beam			
ATF-2	Demo. of compact Final Focus optics (design demagnification, resulting in a nominal 35 nm beam size at focal point).			
	Stabilisation of 35 nm beam over various time scales.	2012		
Linac high-gradient operation and system demonstrations:				
TTF/FLASH	Full 9 mA, 1 GeV, high-repetition rate operation	2009		
STF/Japon & ILCTA- NML	Cavity-string test within one cryomodule (S1 and S1-global)	2010		
	Cryomodule-string test with one RF Unit with beam (S2)	2012		

br Test Facility (ATF) à KEK

∼ 54 m

STF : ILC Cryostats and Cavities for Main linacs

1 cryomodule contains 9 neodium cavities (E_{acc} = 31.5MV/m on average, each having a length ~ 1m)

- Total ~1700 cryostats, ~16000 cavities.
- 3 cryostats to be driven by one 10MW L-band klystron
- Total 560 RF units in e+/e- main linacs

De la conception à l'exploitation

Utilisation de l'ntéraction Compton Laser-électron

photon(laser) + électron → photon' + électron'

Exemple du faisceau laser YAG

λ ≈ 1µm → énergie des photons du faisceau
 laser E_{laser} ≈ 1eV
 On peut décrire la diffusion Compton laser

électron via le processus élémentaire

Correlation cinématique entre l'angle et l'énergie du photon

Applications de la diffusion Compton : utilisation d'un faisceau X/γ quasi monochromatique

Applications de l'interaction laserelectron à basse énergie

 Ce qui a été fait auprès des gds accélérateurs à rayonnement synchrotron avec les rayons X et que l'on voudrait refaire dans une petite salle (grâce à l'interaction Compton)→ mais qui necessite beaucoup moins de brillance !

- muséologie (backslide)
- radiothérapie (backslides)

Exemple tiré d'une publication médicale de l'ESRF

However, a routine use of synchrotron light for human treatment will necessitate the development of new X-ray monochromatic sources devoted to medical use. The next decade should be productive in developing such technology.

The ThomX project: monochromatic high flux X-ray source for Low-energy applications

□ Collaboration between:

LAL (A. Variola, project leader),

SOLEIL (Synch. Rad. machine, Saclay),

- CELIA (Laser lab., Bordeaux)
- NEEL (Instr. X, Grenoble)
 - + C2RMF/CNRS (scientific lab. of Le Louvre museum, led by P. Walter) at start (C.R. Physique 10 (2009)676)
 - + New archeological Lab. in paris (P. Walter)
 - + ESFR&INSERM (Grenoble, Synch. Rad. Machine, medical ligne group, A. Bravin)
 - + Thales for industrial applications

□ ThomX funded (~2 week ago) with the 'grand emprunt national'
~10M€

The ThomX machine

Higher flux than rotating anodes But worse brilliance that Synch. Rad. Machines...

Toujours plus : ELI–Nuclear Pilar (ELI-NP) → Produire des rayons γ de qque MeV et de 20MeV pour faire de la physique nucléaire

> besoins technologiques au-delà des possibilités technologiques actuelles

Proposition américaine

Contre proposition Italienne (Frascati) : de la bande C ! → Début de collaboration IN2P3-INFN...

Application à moyenne énergie : fluorescence nucléaire

- Projet américain (LLNL)
 - Machine à rayon gamma monochromatique pour identifier la présence d'Uranium aux frontières
 - La machine doit tenir dans un camion !
- Projet japonais
 - Mesurer la composition des éléments radioactifs dans les 'bidons' de déchets à enterrer

www.ca.infn.it/alghero2008

Applications : gestion des déchets nucléaires

PosiPol'08, Hiroshima, Jun.18, 2008.

the most urgent issue !

Gestion des déchets nucléaires

68,900 drums stored in JAEA (Agence Nucléaire du Japon)

8 M JPY / drum

Le stockage des déchets est une procédure très onéreuse : on enterre les bidon suivant leur dangerosité **MAIS** les mesures de radioactivité ne sont pas assez précises

- →Besoin d'identifier les isotopes radioactifs dans les bidons (U238, …)
- Fluorescence nucléaire résonnante avec 1-4 MeV rayons gamma
- → Faisable avec une machine Compton
 - → 320 MeV electrons
 - → ~600kW puissance moyenne, 2ps@130MHz, 1µm longueur d'onde laser

Hajima et al., J.Nucl.Sci.Tech45(2008)441

R. Hajima et al., J. Nucl. Sci. Tech. 45 (2008)

Segregation of Nuclear Wastes

68,900 drums stored in JAEA

Nondestructive Assay by Nuclear Resonant Fluorescence

- Irradiation of γ-rays tuned at a NRF energy of nuclide to detect
- Detection of scattered γ-rays by energy-resolved detectors
- NRF is a unique fingerprint of nuclides → radioactive and stable nuclides can be detected
- Using 1-4 MeV γ-rays → applicable to thick objects

Un accélérateur d'électrons de 350 MeV est nécessaire pour cette application Caractéristiques du laser :

→~600kW average power,

2ps@130MHz, 1µm laser wavelength

Nondestructive Detection of Isotopes

Applications à haute énergie

• 'Laser wire'

Polarimetre Compton

Source de positrons polarisés

Collisionneur photon-photon

Mesure du profil transverse des faisceau d'électrons

Expérience de faisabilité : CW Laser wire beam size monitor in ATF/KEK

2 FP cavities

CW 300mW 532nm Solid-state Laser fed into optical cavities 14.7μm laser wire for X scan
5.7μm for Y scan
(whole scan: 15min for X,
6min for Y)

J. Urakawa

Ongoing project Oxford/ATF: high power pulsed fiber laser

Pour mesurer la 'polarisation' des électrons on change la polarisation du laser et on mesure la 'distribution d'énergie' de photons Compton

Compton Polarimeter at Jefferson Lab e- 4GeV [CEA Saclay/LPCClermont NIMA412(1998)1] Compt 20 mrad Vacuum (10 -8 Torr) 1m Pockels Cell

→Polarimètre Compton similaire à HERA (e- 27GeV), LAL&CEA en 2000

Source de positrons polarisés pour l'ILC

Moortgat-Pick et al. Phys.Rep.460(2008)131 Araki et al. arXiv:physics/0509016

Une technique possible pour créer des positrons polarisés :

. . .

Expérience de faisabilité ATF/KEK

• Omori et al. PRL 96(2006)114801

Grosse R&D nécessaire pour les e+ de l'ILC

➔ 10 faisceaux laser de plus de 10MW puissance moyenne chacun

R&D sur les cavités Fabry-Perot

•Exp. faisabilité ATF/KEK

•2-mirror cavity •~1ps laser pulses@357MHz •Finesse <1000

Shimizu et al. J.Phys.Soc.Jpn.78(2009)074501

October 2007: Install the 2-mirror cavity into ATF-DR

R&D actuel (CELIA/Hiroshima/KEK/LAL): •3D 4-mirror cavity, BUT : 1MW, 1ps, 178MHz

 Increase laser power: low power picosecond Yb doped oscillator (<1W) and fibre amplification → 200W average power@178MHz

gamma-gamma Collider, 'PLC'

Telnov, NIMA355(1995)3

On 'joue' avec les orientations des spins de rayons gamma (e⁻ & laser polarisation) •Mesure la plus précise du couplage Higgs/photon (i.e. 'masse/radiation')

Faisceau d'électrons de 250 GeV avec ~3000 pulses par trains @ 5Hz & 5J/pulse ! **Peu d'études techniques :**

•LLNL Mercury laser + regenerative cavity
Applications en paléontologie

http://www.esrf.eu/news/general/amber/amber/

Morceau d'ambre datant de 100 millions d'années avant JC (charentes)

> La très grande qualité optique des faisceaux de l'ESFR → reconstruction non destructive en 3D des éléments piégés dans l'ambre il y a plus de 100M d'années !!!

(Tafforeau, ESRF)

Application à l'étude des oeuvres d'art

'K edge imaging'

- Les pigments contiennent des éléments chimiques lourds
- Couche K' de ces éléments excités par rayons X→identification

Total Cross Section of X-ray attenuation

K-edge imaging sur les éléments lourd de pigments (Pb→blanc, Hg→ vermillion ...)

 Mais ~30keuros d'assurance pour 2 jours
→ machine compacte dans un musée Souhaitée...

> J. Dik et al., *Analytical Chemistry*, **2008**, *80*, 6436 Cours d'histoire de l'art sur cette étude ! <u>http://www.vangogh.ua.ac.be/</u>

Une application médicale à l'ESRF (ligne ID17): radiothérapie pour le traitement des gliomes

Pas de traitement pour le 'glioblastome' aujourd'hui (7 cas/10⁵ par an en France...) •Idée (cf thèses S. Corde, J.F. Adam, ESRF) fixer un élément lourd (platine) sur l'ADN cancéreuse •Puis exciter l'atome par un rayonnement X (78 keV=couche K) pour détruire cette ADN...

Mesures effectuées à l'ISRF sur des rats (auquels on a inoculé le gliome)
→ Phase d'essais cliniques à l'ESRF (chats et chiens...)

694 % Increase in life span relative to median survival time

M.C. Biston, et al., Cancer research, 64, 2317-2323 (2004)

A. Bravin, www.ca.infn.it/alghero2008