

Ultra-thin Tracking Detectors for ILC and Other Applications

Wojciech Dulinski, IPHC, Strasbourg, France

Outline

• Short introduction to semiconductor (tracking) detectors

• Ultra-thin, high-precision trackers for ILC and other applications

- Monolithic CMOS Pixel Sensors
- SOI detectors
- New trends: Vertical Integration (3D electronics)
- Conclusions

Physics motivation for vertex detectors in particle physics experiments: identification and tracking of short living particles

Vertex reconstruction is used for the following:

- lifetime
- quark mixing
- B-tagging
- top physics
- background suppression

For this application, the spatial resolution is THE factor of merit!

<u>Typical Tracking Detector</u> <u>Characteristics</u>

Detector Type	Spatial Resolution	
Drift Chambers	~100 µm	
MSGC	~30 µm	
Silicon Detectors	2-15 μm	
Nuclear Emulsion	1 μm	

Hubert CURIEN

Vertex detector based on silicon detectors

Impact Parameter Resolution

Example of background suppression

Without Multiple Scattering

Hubert CURIE

Thin, low Z, highly segmented detector \rightarrow silicon sensors!

The Generic Semiconductor Radiation Detector

In general, the following steps must take place in the process of Ionising Radiation detection :

- Radiation Interaction with the detector active medium : transfer of a part of initial radiation energy to the detector (OR total absorption with total energy transfer).

- Charge Carriers Creation inside detector : effective use of absorbed energy.

- Efficient Charge Carriers Transport across detector volume using internal electric field : useful signal (electric current pulse) generation.

- Amplification and processing of a primary signal with the help of an (external) electronic circuits : interface with data acquisition/storage system.

In consequence, good ionising radiation detector should optimise all above steps...

STRASBOURG

Choice of detector material for tracker : silicon!

Landau distribution (calculated) for a 300µm and a 150µm thick silicon detector.

Semiconductor Position Sensitive Detectors: <u>Single Sided Microstrip Detector</u>

Semiconductor Position Sensitive Detectors: Double Sided Microstrip Detector

Semiconductor Position Sensitive Detectors: <u>Hybrid Pixel Detector</u>

A pixel detector is a single sided detector segmented in both directions.

The readout chip is mounted directly on top of the pixels, each pixel has it's own readout amplifier. Metal micro balls (Bump bonding) are used to provide electrical connection between two wafers. This is relatively complicated and expensive procedure!

Semiconductor Position Sensitive Detectors: <u>Monolithic Pixel Detector</u>

Both detector elements and readout electronics are integrated on the same (silicon) wafer, using slightly (?) more complicated process. High granularity, low noise, thin detectors can be fabricated this way.

Example of possible monolithic detector implementation: SOI CMOS + High Resistively handling wafer

Pluridisciplinaire Hubert CURIEN STRASPOURG

Semiconductor Position Sensitive Detectors: <u>Silicon Drift Detector (SDD)</u>

Semiconductor Position Sensitive Detectors: Charge Coupled Device (CCD)

An imaging CCD consist firstly of a square matrix of potential wells, so the charge signal generated below the silicon surface can be accumulated, building up an image. Secondly, by manipulating clock voltages in the parallel register charge can be transferred in parallel from one row to the next and into linear register in the bottom of the matrix. Then the linear register is read out, cell after cell. Thus the CCD image is converted from a 2-D charge pattern to a serial train of pulses.

Fully depleted pn-CCD with integrated on-chip first amplification stage (P.Hall et al., SPIE, 3114: 126-133, 1977C)

Microelectronics for trackers (silicon detectors) in France

- CPPM: hybrid pixels for ATLAS (DMILL → IBM 0.25)
- IPHC (CRN, LEPSI, IRES): microstrip readout for STAR (AMS 1.2) and ALICE (IBM 0.25),
- IPHC and DAPNIA: monolithic pixels for STAR, EUDET, CBM and ILC
- IPNHE: microstrips for ILC

Ultra thin detectors for future particle physics experiments

Example: Microvertex Detector for ILC

Key issuses:

Hubert CURIEN

- measure impact parameter for each track
- space point resolution < 5 μm</p>
- smallest possible inner radius $r_i \approx 15 \text{ mm}$
- transparency: ≈ 0.1% X₀ per layer
 = 100 µm of silicon
- stand alone tracking capability
- full coverage |cos Θ| < 0.98</p>
- modest power consumption < 100 W</p>
- Five layers of pixel detectors plus forward disks
 - pixel size O(20×20 μm²)
 - 10⁹ channels
- Note: wrt. the LHC pixel detectors
 - 1/5 r_i
 - 1/30 pixel area
 - 1/30 thickness

In order to be thin, reduce power!

CMOS Active Pixel Sensors for radiation (light) imaging: late 80's (?)

E. R. Fossum, "CMOS image sensors :electronic camera-on-a-chip", IEEE Trans. On Electron Devices 44 (10) (1997)

Basic pixel electronics schemes (photodiode, 3 or 4 transistors, transfer gate...) : all this elements are still bases of today's digital cameras

From digital cameras to particle tracking: use of an epitaxy layer as a detector active medium

B. Dierickx, G. Meynants, D. Scheffer "Near 100% fill factor CMOS active pixel sensor", Proc. of the IEEE CCD&AIS Workshop, Brugge, 1997

Twin - tub (double well), CMOS process with <u>epitaxial layer</u>

• Charge generated by the impinging particle is collected by the n-well/p-epi diode.

• Active volume is underneath the readout electronics allowing a 100% fill factor.

• The active volume is NOT fully depleted: the effective charge collection is achieved through the thermal diffusion mechanism.

• Doping gradient $(P^{++}_{substrate} - P^{-}_{epi} - P^{+}_{well})$ results in a potential minimum in the middle of epitaxy layer, limiting charge spread (2D instead of 3D)

• The device can be fabricated using almost any standard, cost-effective and easily available CMOS process

Beginning of MAPS activity at Strasbourg: 1999

Dierickx idea brought to us by R. Turchetta with his own proposition to use it for particle tracking, bought (and financed) by M. Winter from IReS and implemented by LEPSI team (B. Casadei, C. Colledani. W.Dulinski ...) backed by a young PhD student from Cracow: G. Deptuch

"Big Bang" → long series of MIMOSA (*Minimum Ionising* Particle MOS Active Pixel Sensor) chips...

Wafer scale MAPS prototype example: Mimosa5 (10⁶ pixels) in AMS-0.6 μm CMOS process (2003)

Six inch wafer hosts 33 sensors, 1.7×1.9 cm² each

Maximum allowed size of a circuit in a standard CMOS process: ~20x20 mm² (reticle)

Reticle <u>stitching</u> is needed, in order to get a larger device (a ladder, ~10x2 cm²)

MIMOSA5

Each reticle is an independent circuit. Periphery logic and bonding pads layout along one side. Simplified stitching of up to 7 reticles in one direction. Still some problems with a yield (~30-40%) but it can be solved (according to some digital imager suppliers).

Real stitching, as offered by TOWER Semiconductor Ltd. The way to fabricate monolithic ladders?

Kodak Professional 14 Mpixel Camera

Hubert CURIEN

Signal processing: Correlated Double Sampling in case of serial (slow) and column-parallel (fast) readout

CDS: Signal = Sample(t_1) – Sample (t_0); t_1 - t_0 is the integration time

The simplest readout electronics: diode + 3 transistors/pixel

Reset in order to inverse bias Continuous serial addressing and 2. readout (digitisation) of all pixels Keeping two successive frames in 3. external circular buffer 4. Following reset when needed (removing integrated dark current) After trigger (or in a real time)), 5. simple data processing in order to recognise hits

Fast ADC 12 bits \square **Buffer : 512 words/channel** FO F1

256 kwords

256 kwords

Pluridisciplinaire Hubert CURIEN STRASBOURG

trigger !

Hubert CURIEN

Data processing: (Digital) Correlated Double Sampling

Calibration of the conversion gain - with soft X-rays

•Calibration methods:

Hubert CURIEN STRASBOURG

> Emission spectra of a low energy X-ray source e.g. iron ⁵⁵Fe emitting 5.9 keV photons.

very high detection efficiency even for thin detection volumes - $\mu = 140 \text{ cm}^2/\text{g}$, constant number of charge carriers about 1640 e/h pairs per one 5.9 keV photon

The 'warmest ' colour represents the lowest potential in the device

IPHC Institut Pluridisciplinaire Hubert CURIEN STRASBOURG

École Microélectronique IN2P3, Porquerolles, 20-25 mai 2007

Simulation of physics process (ISE – TCAD)

 $\tau = 0$ ns Carrier concentration $\tau =$

- $\tau = 25 \text{ ns}$
- The charge collection efficiency examined using the mixed mode device and circuit simulator DESSIS-ISE from the ISE-TCAD package,
- The charge collection is traced as a relaxation process of achieving the equilibrium state after introducing an excess charge emulating passage of the ionising particle
- The device is described in three dimensions by a mesh generated using the analytical description of doping profiles and the boundary definition corresponding to the real device,
- Different detector parameters, including the thickness of the epitaxial layer, the size of a pixel and collecting diodes and number of diodes per pixel, were investigated.

Mimosa9 (various pitch) beam tests results (THE reference)

AMS 0.35 µm CMOS OPTO process

- Advanced mixed-signal polycide gate CMOS: 4 metal, 2 poly, high-res poly, 3.3V and 5V gates
- Optimized N-well diode leakage current
- <u>14 μm epi substrate (20 μm possible)</u>
- Availability through multi-project submissions, with a reasonable pricing (< 1 k€/mm²). In production, the price is of few k€ per 8 inch wafer.

Institut Pluridisciplinaire Hubert CURIEN

A "typical" example from the beam tests: 30µm pitch array, 20°C

M9 ; run 9534; Pl 10, dist 90; Gain 7.200; eff 99.810 +- 0.070; Seed 6.0; Neigh 4.0

Institut Pluridisciplinaire Hubert CURIEN STRASBOURG

École Microélectronique IN2P3, Porquerolles, 20-25 mai 2007

Modified sensing elements: self-biasing diode

DC level stabilization

RESET transistor replaced by a forward-biased diode, equivalent of a ~TeraOhm resistor for a ~fA (typical) leakage current

New charge sensing elements: PhotoFET

Charge collected at the N-well affect the threshold voltage of a pMOS transistor and modulates its current: signal amplification

-Charge-to current amplification -High transconductance = high

sensitivity

-Low noise/large collection area

First prototype test results Sensitivity: 330 pA/electron ENC: ~5 electrons

But serious (and confirmed) performance degradation when <u>assembled in array...</u> Substrate pick-up???

STAR

École Microélectronique IN2P3, Porquerolles, 20-25 mai 2007

Applications of MAPS in particle physics experiments: slow (serial, analog) readout

L = 20 cm

STAR VxD upgrade 2008: 9+24 ladders

•(analog) readout time = integration time = 2 - 4 ms

•Room temperature operation (chip at ~ ≤40°C)

•Air cooling only

•lonizing radiation dose:~8 krad/year (3 10¹¹ p/cm²/year)

•The Ultimate Upgrade: luminosity up, dose accordingly higher , integration time ~10x shorter.

•Considered solution is based serial readout for the first upgrade and on column-parallel binary readout for the Ultimate Upgrade

Radiation tolerance for integrated ionizing dose: dark current increase

Standard N-well/p-epi diode dark current increase after irradiation with a ⁶⁰Co γ source (Mimosa9)

"Thin-oxide" diode dark current increase after irradiation with a ⁶⁰Co γ source

MimoSTAR-2 (30 µm pitch): the demonstrator for STAR experiment microvertex upgrade. Based on radiation tolerant N-well collecting diodes. JTAG based control and bias setting.

Mimo*2 beam tests: efficiency after irradiation

Efficiency vs. dose, for S/N cuts = 5 (seed) and 2 (crown)

After 47 kRads, efficiency >99 % at room temperature AND long (4ms) integration time, for the fake hits rate <10⁻⁴

Applications of MAPS in particle physics experiments: fast, column parallel, digital readout

CBM vertex detector (FAIR/GSI)

- •Readout time = integration = time resolution: <10 µs
- •Binary readout, no zero suppression
- Vacuum operation
- Ionizing radiation dose: >2 MRad
- •Neutron fluence (1MeV eq.): >10¹³ n/cm²
- •Total single layer thickness: <150 µm (Si)

Extremely demanding application, but no alterative solution candidates...

Mimosa8 (TSMC-0.25µ, 8 µm epi) – a binary readout demonstrator

- CDS in pixel, based on "clamping" circuit solution
- On-chip FPN suppression
- Offset compensated comparator at the end of each column
- Pixel pitch 25 x 25 µm2

Prototype in collaboration with Dapnia/Saclay
→ Yavuz Degerli (principal author)

Mimosa8 beam tests results

Hubert CURIEN

Output noise: 0.9 mV (ENC = 15 electrons)
Pixel-to-pixel FPN: 0.45 mV (7.5 electrons)
Spatial resolution: σ_r = ~7 μm

First demonstration of feasibility of FPN correction using on-chip real time circuitry
The design goal confirmed by the beam tests results: efficiency > 99 %
Second version (Mimosa16) in AMS-035 OPTO with 14 and 20 µm epi <u>under test</u>

Amplifier optimization: DC coupled and AC coupled on-pixel amplifiers (→ Michal Szelezniak)

AC coupled amp:

- Separation from power supply of the sensing node
 - Increase of the voltage \Rightarrow increase of the depleted region \Rightarrow no change on the operating point
- Separation from influence of the leakage current
 - Increase of the leakage current after irradiation ⇒ change of the bias on the sensing node ⇒ no change on the OP

DC versus AC diode coupling

Charge collection efficiency and ENC in function of bias of charge collecting diode

DC seems to win in simplicity and performance...

Amplifiers for MAPS (\rightarrow Andrei DOROKHOV)

PMOS transistors not allowed inside pixel -> signal decrease due to parasitic NWELL
but using PMOS transistor as a load would be the preferred choice to increase in-pixel amplifier gain...

bias

M2

Id

M1

in

Asignal

current

out

École Microélectronique IN2P3, Porquerolles, 20-25 mai 2007

Amplifiers for MAPS

As an example from simulation to be presented later: $gm_1=47 \ \mu S \ gm_2=4 \ \mu S \ gmb_2=0.9 \ \mu S \ gds_1=8 \ nS \ gds_2=0.5 \ \mu S$

• gds_1 and $gds_2 < gm_1$, gm_2 , gmb_2

 $\boldsymbol{\cdot}$ so one need to increase $g\boldsymbol{m}_1$ and decrease $g\boldsymbol{m}_2$ and $g\boldsymbol{m}\boldsymbol{b}_2$

• with decreasing gm_2 we decrease DC current, and hence gm_1 so there is a limiting contradiction for the gain/bandwidth of this schematic...

Due to gm_2 there is unwanted dependency of I_d on U_{out} , so can we reduce dependency of I_d on U_{out} without changing gm_2 ?

Improved load for the common source transistor

-> decouple the gate of the load transistor from the power supply with one additional NMOS transistor, used as a diode

Hubert CURIEN

due to the floating gate and parasitic gate-to-source capacitive coupling the AC voltage at the gate will follow to the output AC voltage ->

• AC current and hence the load for the common source transistor decreases

 load for DC is almost unchanged as DC voltage drop on additional NMOS transistor is small

Gain =
$$V_{out}/V_{in}$$
 = $gm_1/(gm_2+gmb_2+gds_1+gds_2)$
The AC gain should increase

The AC gain should increase, while the DC operational point should not change!

luridisciplinaire Hubert CURIEN STRASBOURG

Test structures with new amplifier

low noise, ~7.5 e (after CDS), and hence higher signal-to-noise ratio
 conversion gain is about 74 mV/e

Pixel optimization: diode size \uparrow , charge collection \uparrow but also parasitic capacity and ENC \uparrow !

Examples from measurements using recent AMS-035 OPTO test structures.

* Collection efficiency: charge collected in 3x3 cluster, measured on 20 µm thick epi wafer and 25 µm pixel pitch

Radiation tolerance for the bulk damage: neutron irradiation

Hubert CURIEN

Mimosa 15: Efficiency (%) vs. Irradiation dose

Charge loss after ~10¹² n/cm², correlated to the diode/pixel area ratio, seems to be rather basic and process independent

Possible (substantial) improvement

B. Dierickx "Multiple or graded epitaxial wafers for particle or radiation detection", US Patent 6,683,360 B1, Jan. 2004 PLUS deep implants available in some BiCMOS processes

Field shaping using doping gradient \rightarrow faster charge collection \rightarrow smaller sensitivity to the <u>bulk damage</u>

Field shaping \rightarrow smaller charge spread \rightarrow optimum conditions for the <u>binary readout</u>

Example from our simulation of novel MAPS structure (ISE TCAD, realistic doping profiles). In parentheses, typical standard structure.

-Charge collection time: < 10 ns (~100ns)

-Charge spread suppression:

> 60% (<30%) of charge in central pixel, all charge inside < 4 pixels (>9 pixels)

Prototypes in construction!

Pluridisciplinaire Hubert CURIEN

Particle energy loss distribution and one pixel geometry (Andrei Dorokhov)

Electrons density (saturated color scale, in the n-well the actual density much larger)

Exploring new possibilities for MAPS performance upgrade, based on Vertical Integration (3D Electronics) <u>industrial</u> process.

Vertical Integration ingredients:
 Wafers thinning down to 10-20 µm (→ flexible sheet!)
 Precision alignment and molecular bonding of several layers
 Through-wafer vias formation for electrical interconnection Result: 3D, monolithic circuit (or a sensor system)

Possible applications in tracking systems:

- Construction of monolithic ladder, integrating two active silicon layers (one full plane, stitched MAPS, plus one signal processing and transmission layer) bonded to heat dissipation, diamond layer. Total thickness < 150µm → proposal for CBM application
- 2. Increased flexibility for wafer choice: <u>post-processing step</u>. Back-thinning and back-contact re-implementation at low temperature is possible, allowing an optimized use of thick, high-resistivity wafers available in many RF deep-submicron CMOS processes

Thick metal for interconnectio n (busing) Graded epitaxial wafer, MAPS layer, 20 µm thick CVD diamond, heat dissipation to periphery, 50 to 100 µm thick

Wojciech.Dulinski@ires.in2p3.fr

École Microélectronique IN2P3, Porquerolles, 20-25 mai 2007

©Ray Yarema

Active Pixel Sensor in SOI

Thin top layer has silicon islands in which PMOS and NMOS transistors are built. A buried oxide layer (BOX) separates the top layer from the substrate. The high resistivity substrate forms the detector volume. The diode implants are formed beneath the BOX and connected by vias. The raw SOI wafers are procured from commercial vendors such as SOITEC in

France.

Fermilab SOI Detector Activities

SOI detector development is being pursued by Fermilab at two different foundries :OKI in Japan, and American Semiconductor Inc. (ASI) in US . The two processes have different characteristics as seen below

Process SOI wafer	0.15µm Fully-Depleted SOI CMOSprocess,1 Poly, 5 Metal layers (OKIElectric Industry Co. Ltd.).Wafer Diameter: 150 mmφ,Top Si : Cz, ~18 Ω-cm, p-type, ~40nm thick	Process	0.18µm partially-Depleted dual gate SOI CMOS process, Dual gate transistor (Flexfet), No poly, 5 metal (American Semicondutor / Cypress Semiconductor.)
	Buried Oxide: 200 nm thick Handle wafer: Cz、 >1k Ω-cm (No type assignment), 650 µm thick (SOITEC)	SOI wafer	Wafer Diameter: 200 mmφ, Handle wafer: FZ>1k Ω-cm (<i>n type</i>)
Backside	Thinned to 350 μm, no contact processing, plated with Al (200 nm).	Backsid e	Thinned to 50-100 μm, polished, laser annealed and plated with Al.
	OKI Process		ASI Process

(available for HEP community through KEK)

Back gate Effect in OKI Process

Results from KEK previous SOI-OKI submission: 2006.9.12 yasuo.arai@kek.jp(STD6)

Fermilab MPW Pixel Design for OKI (→ Grzegorz Deptuch)

• Counting pixel detector plus readout circuit

École Microélectronique IN2P3, Porquerolles, 20-25 mai 2007

- Maximum counting rate ~ 1 MHz/pixel.
- Simplified architecture due to design time constraint
 - Reconfigurable counter/shift register
 - 12 bit dynamic range
 - Limited peripheral circuitry
 - Drivers and bias generator
- Array size 64x64 pixels
- 350 micron detector thickness

Pixel Design in OKI Process

Wojciech.Dulinski@ires.in2p3.fr

Vertical Scale Integration (3D): credit to Ray Yarema from FNAL!

• SOI detector technology offers several advantages over MAPS.

École Microélectronique IN2P3, Porquerolles, 20-25 mai 2007

- 3D offers advantages over SOI detectors
 - Increased circuit density due to multiple tiers of electronics
 - Independent control of substrate materials for each of the tiers.
 - Ability to mate various

technologies in a monolithic assembly

- DEPFET + CMOS or SOI
- CCD + CMOS or SOI
- MAPS + CMOS or SOI

3D Integrated Circuits

- A 3D chip is generally referred to as a chip comprised of 2 or more layers of active semiconductor devices that have been thinned, bonded, and interconnected to form a "monolithic" circuit.
- Often the layers (sometimes called tiers) are fabricated in \bullet different processes.

École Microélectronique IN2P3, Porquerolles, 20-25 mai 2007

- Industry is moving toward 3D to improve circuit performance. (Performance limited by interconnect)
 - Reduce R, L, C for higher speed
 - Reduce chip I/O pads
 - Provide increased functionality
 - Reduce interconnect power and crosstalk
- HEP should watch industry and take advantage of the technology \bullet when applicable.
- Numerous examples of industry produced devices.^{5,6,7} (See backup slides)

3D Routing (small chip) 2D Routing (large chip)

Two Different 3D Approaches for HEP

École Microélectronique IN2P3, Porquerolles, 20-25 mai 2007

- Die to Wafer bonding
 - Permits use of different size wafers
 - Lends itself to using KGD (Known Good Die) for higher yields
- Wafer to Wafer bonding
 - Must have same size wafers
 - Less material handling but lower overall yield

Wojciech.Dulinski@ires.in2p3.fr

©Ray Yarema

Key Technologies for 3D

- There are 4 key technologies
 - Bonding between layers
 - Wafer thinning
 - Through wafer via formation and metalization
 - High precision alignment
- Many of these technologies are also used in the development of SOI detectors

IPHC Institut Pluridisciplinaire Hubert CURIEN

École Microélectronique IN2P3, Porquerolles, 20-25 mai 2007

©Ray Yarema

Key Technologies

Wojciech.Dulinski@ires.in2p3.fr

©Ray Yarema

Key Technologies

2) Wafer thinning

Through wafer vias typically have an 8 to 1 aspect ratio. In order to keep the area associated with the via as small as possible, the wafers should be thinned as much as possible. Thinning is typically done by a combination of grinding, lapping, and chemical or plasma etching.

Six inch wafer thinned to 6 microns and mounted to 3 mil kapton.

Key Technologies

3) Via formation and metalization

Two different proceedures are generally used:

Via First - vias holes and via metalization take place on a wafer before wafer bonding.

Via Last - vias holes and via metalization take place on a wafer after wafer bonding.

Vias in CMOS are formed using the Bosch process and must be passivated before filling with metal while Vias in SOI are formed using an oxide etch are filled without passivation.

SEM of 3 vias using Bosch process⁸

Via using oxide etch process (Lincoln Labs)

Typical diameters are 1-2 microns

Wojciech.Dulinski@ires.in2p3.fr

©Ray Yarema

Key Technologies

4) High Precision Alignment

Alignment for both die to wafer and wafer to wafer bonding is typically better than one micron. (Photos by Ziptronix.)

Die to Wafer alignment and placement

Wafer to Wafer alignment and placement

Example1: RTI 3D Infrared Focal Plane Array

- 256 x 256 array with 30 µm pixels
- 3 Tiers
 - HgCdTe (sensor)
 - 0.25 µm CMOS (analog)
 - 0.18 µm CMOS (digital)
- Die to wafer stacking
- Polymer adhesive bonding
- Bosch process vias (4 µm) with insulated side walls
- 99.98% good pixels
- High diode fill factor

Array cross section

Infrared image

7 μm

©Ray Yarema

Example2: MIT LL3D Megapixel CMOS Image Sensor

- 1024 x 1024, 8 µm pixels
- 2 tiers
- Wafer to wafer stacking (150 mm² to 150 mm)
- 100% diode fill factor
- Tier 1 p+n diodes in >3000 ohm-cm, n-type sub, 50 µm thick
- Tier 2 0.35 um SOI CMOS, 7 μm thick
- 2 μm square vias, dry etch, Ti/TiN liner with W plugs
- Oxide-oxide bonding
- 1 million 3D vias
- Pixel operability >99.999%
- 4 side abuttable array

©Ray Yarema

Example3: MIT LL 3D Laser Radar Imager

Wojciech.Dulinski@ires.in2p3.fr

École Microélectronique IN2P3, Porquerolles, 20-25 mai 2007

©Ray Yarema

Process Flow for MIT LL 3D Chip

- 3 tier chip (tier 1 may be CMOS)
 - 0.18 um (all layers)
 - SOI simplifies via formation
- Single vendor processing

1) Fabricate individual tiers

		200 2001 2012 201
	Buried Oxide	
Wafer-2	Handle Silicon	
		3
988 888 888 888	1000 0000 0000 0000	2002 2002 2008 2008
	Buried Oxide	
Wafer-1	Handle Silicon	

Wojciech.Dulinski@ires.in2p3.fr

©Ray Yarema

Who is Working on 3D ICs?

Asia: ASET, NEC, University of Tokyo, Tohoku University, CREST, Fujitsu, ZyCube, Sanyo, Toshiba, Denso, Mitsubishi, Sharp, Hitachi, Matsushita, Samsung

Europe: Fraunhofer IZM, IMEC Delft, Infineon, Phillips, Thales, Alcatel Espace, NMRC, CEA-LETI, EPFL, TU Berlin

Conclusions

ILC is still not approved, but in order to satisfy all requirements for the Vertex Detector there, we must:

- Continue to study and use newly available VLSI fabrication processes, but follow industry "mainstreams"
- Start to use new "packaging" technologies
- Increase flexibility using "post-processing" or "pre-processing" steps
- Limit the power dissipation!
- Have a new CAD tools for simulation!
- •

• There is a physical limit coming from <u>the data flow</u>, even if front-end circuitry can be replaced by power efficient elements (for example based on avalanche diodes, like SiPMs ???)

Appendix

How to modify standard library cells (AMS-0.35) in order to decrease ionization induced Single Event Latch up (SEL), <u>using minimum effort approach</u>

Differences between registers

□ STD & 3B – AMS standard cells

 \Box 2µ & 5µ stretched registers – distance between complementary transistors was increased:

SEL tests results of modified cells (D flip-flops, buffers, I/O pads)

• for 2u stretched cells latch-up hardness is 2 orders of magnitude better

• for 5u we didn't observe any events

Latch-up Cross Section