12 bit – 25 MHz – Pipeline Analog to Digital Converter

Ecole de Microélectronique IN2P3 Fatah-Ellah RARBI LPSC Grenoble

Outline

- Architecture project
 - ADC: 1.5 bits
 - ADC: 2,5 bits
- ADC test
 - ADC parameters
 - Static parameters
 - Dynamic parameters
 - Test method
- Conclusions

High speed ADC industrial purpose

• MEMS

- Gyroscope
- Accelerometer

• Imaging applications

- Infrared Bolometer
- Cryogenic Bolometer
- Nanowire sensor (LOAG Lab)

Process matching is limiting to 10 bits

- Increase resolution in 1st stage
 - Difficult to design OTA block
 - Comparator offset
 - Capacitor Matching
- Digital gain correction
 - Dynamic Element Matching
 - Still under study
- Ecole de Microélectronique IN2P3 Rarbi Fatah – Daniel Dzahini

- Multi-bit 1st stage: 2.5 bit
 - MDAC with a gain of 4
- Back-end composed by 6*1.5 bit stage and a 3 bit flash ADC

Ecole de Microélectronique IN2P3 Rarbi Fatah – Daniel Dzahini

Pipeline ADC with Multi-bit first stage (3)

• Dynamic element

- Random selection of the feedback capacitor
 - Closed loop Gain modulation
- 1 Transmission gate from comparator output to DAC control
- Distortion => Noise

11

$$V_{out} = \left(\frac{\sum_{i=1}^{3} C_{s_i} + C_f}{C_i}\right) \times V_{in} \pm \alpha \times \left(\frac{\sum C_j}{C_i}\right) \times V_{ref}$$
$$i = \{1, 2, 3, f\}, i \oplus j = 0$$

- Dynamic Element Matching: MATLAB simulation
 - Distortion => Noise
 - SFDR is increased
 - Improve linearity

Submitted on September 09

Ecole de Microélectronique IN2P3 Rarbi Fatah – Daniel Dzahini

Test Method (1): Full 1.5 bit stage ADC

- Tools: Labview + MATLAB
- Ramp input signal
 - DC parameter extraction (Labview)
 - Step size = LSB
 - > 100 points by step
 - INL: fit of the output transfer function
- Sine wave input signal
 - Static parameters => Histogram (statistical results) (MATLAB script)
 - Coherent sampling (excel script: MAXIM IC)
 - Dynamic parameters => FFT

Test Method (2): Full 1.5 bit stage ADC

• Tools: MATLAB

- Sine wave input signal
 - Static parameters => Histogram (statistical results) (MATLAB script)

17

```
% DNL and INL extraction from histogram plot
    my minbin=min(my data);
 з
    my maxbin=max(my data);
 4
    % Histogram plot
 5
    figure(1);
 6
    hist(dat,my minbin:my maxbin);
 7
    xlabel('Code i'); title('histogamme'); grid
 8
    my h=hist(dat,my minbin:my maxbin);
9
    % Cumulative histogram
10
    my ch=cumsum(my h);
11
    % Edge level
12
    my_T=-cos(pi*my_ch/sum(my_h));
13
    %linearise
14
    my hlin=my T(2:end) - my T(1:end-1);
15
    % Cut min and max
16
    trunc=2;
17
    hlin trunc = my hlin(1+trunc:end-trunc);
18
    % calculate DNL
19
    my_dnl= [0 hlin_trunc/my_lsb-1];
20
    misscodes = length(find(my dnl<-0.9));
21
    % DNL Plot
22
    hold off; figure (2);
23
    plot(my_dnl);
24
    xlabel('Code i'); ylabel('DNL(i)');grid
25
26
    % Calculate INL
27
    my inl= cumsum(my dnl);
    % INL Plot
    hold off; figure (3);
    plot(my inl);
    xlabel('Code i');ylabel('INL(i)');grid
```

Test Method (3): Full 1.5 bit stage ADC

- Tools: MATLAB
- Sine wave input signal
 - Coherent sampling (excel script: MAXIM IC)

$$\frac{f_s}{f_{in}} = \frac{N_{tot}}{N_{wind}} \text{ prime number}$$

Example:

Conclusions (1)

- Pipeline ADC 25MHz < 40mW
 - 2 versions: 1.5 bit stages, multi-bit first stage
- Figure of Merit (FoM) \rightarrow ADC with full 1.5 bit stage

19

Conclusions (2)

- ADC Test
 - Parameters
 - Methods

Testing results reliability Depend very often on SETUP & METHOD used

Ecole de Microélectronique IN2P3 Rarbi Fatah – Daniel Dzahini

12 bit – 25 MHz – Pipeline Analog to Digital Converter

Ecole de Microélectronique IN2P3 Fatah-Ellah RARBI – Daniel Dzahini – Laurent Gallin-Martel LPSC Grenoble

Thanks for your attention