IN 2 P 3

OMEGAPIX

mega

CSNSM CAL

The first 3D IC prototype for the ATLAS upgrade SLHC pixel project designed at LAL

> École IN2P3 de microélectronique La Londe les Maures 12/15 octobre 2009

A. Lounis, C. de La Taille, N. Seguin-Moreau, G. Martin-Chassard, <u>D. Thienpont</u> from LAL (Orsay) and Y. Guo from LPNHE (Paris)

Orsay Micro Electronic Group associated

Outline

- Chartered/Tezzaron 3D technology for the ATLAS upgrade SLHC pixel project
- Analog cell design: analog tier
 - Preamplifier
 - Shaper + Threshold DAC
 - Discriminator
- Digital cell design: digital tier
 - 24 DFF shift register
- Dedicated test chip
- Conclusion

SLHC : 10x increased luminosity => new RO electronics have to be designed

We are studying an alternative approach to:

- ✓ Minimize pixel pitch: study smaller pixels (50x50 µm² instead of 50x250 µm²)
- ✓ Target 3 µW/ch: 2 µW/ch for the analogue tier, 1 µW/ch for the digital one
- ✓ Design analogue tier with low noise low power preamp including shaping + threshold DAC
- ✓ Low threshold (1000 e-), low noise (100 e-)
- ✓ Discriminator in digital tier + dynamic memory

Goals:

- ✓ Explore the Chartered 130nm CMOS techno and 3D features from Tezzaron
- ✓ Study variants of blocks for FEI4 (preamp, discri, DAC, local storage...)
- Study digital coupling to analog tier with discri in digital tier (not still implemented)

Pixel Matrix

Plannar pixel sensor designed at MPI (Munich)

- ✓ n⁺ pixels on p-type substrate
- ✓ 6,85 x 3,26 mm²
- ✓ 400 pixels
- ✓ 50 x 50 µm²
- ✓ 18 GRs
- ✓ thikness: ~ 100 μ m but 75 μ m expected at term

()mega

OMEGAPIX: first 3D IC prototype

OMEGAPIX is a two stacks 3D chip: analogue tier + digital tier. Sensor will be bonded directly on the back side of the thinned analogue layer.

mega

Analogue channel: preamplifier + shaper + discriminator + DAC to fix the threshold

Digital channel: one 24 DFlipflop register

OMEGAPIX includes 1536 channels divided in 24 columns and 64 ch/col.

October 14, 2009

Outline

- Chartered/Tezzaron 3D technology for the ATLAS upgrade SLHC pixel project
- Analog cell design: analog tier
 - Preamplifier
 - Shaper + Threshold DAC
 - Discriminator
- Digital cell design: digital tier
 - 24 DFF shift register
- Dedicated test chip
- Conclusion

October 14, 2009

OMEGAPIX: Analogue tier – Charge preamplifier Omena

October 14, 2009

October 14, 2009

OMEGAPIX: typical simulation

Simulation conditions: Qinj = 1000 e-DAC: 1000 (only 2.5/0.5 nmos_1p5_lvt as shaper), Vth = 800 mV

October 14, 2009

Ecole IN2P3 de microélectronique 2009 - D. Thienpont

()<u>mega</u>

Outline

- Chartered/Tezzaron 3D technology for the ATLAS upgrade SLHC pixel project
- Analog cell design: analog tier
 - Preamplifier
 - Shaper + Threshold DAC
 - Discriminator
- Digital cell design: digital tier
 - 24 DFF shift register
- Dedicated test chip
- Conclusion

OMEGAPIX: Digital tier

Digital tier has been designed by Yixian Guo from LPNHE. Each channel includes a 24 DFlipflop register: main tests will focus about the noise study

Outline

- Chartered/Tezzaron 3D technology for the ATLAS upgrade SLHC pixel project
- Analog cell design: analog tier
 - Preamplifier
 - Shaper + Threshold DAC
 - Discriminator
- Digital cell design: digital tier
 - 24 DFF shift register
- Dedicated test chip
- Conclusion

OMEGAPIX: dedicated test chip – Slow Control

October 14. 2009

OMEGAPIX: dedicated test chip - probes

Several column types have been designed allowing us to study various flavours of transistor types (normal, low VT, 3p3), noise, oscillations...

✓ Columns 1 to 10: reference channels

✓ Columns 11 to 18: various preamplifier transistor types have been integrated

✓ Column 19 to 22: without variable gain

- ✓ Column 23: discriminator has been removed
- ✓ Column 24: shaper has been removed

At the first time, the sensor will not be bonded, nevertheless there is the possibility to inject charge via a pad

Some others possibilities are available...

()mega

Outline

- Chartered/Tezzaron 3D technology for the ATLAS upgrade SLHC pixel project
- Analog cell design: analog tier
 - Preamplifier
 - Shaper + Threshold DAC
 - Discriminator
- Digital cell design: digital tier
 - 24 DFF shift register
- Dedicated test chip
- Conclusion

Conclusion

Measurements

✓ Technology characterization: measurements of various transistor types, noise, layers coupling, radiation hardness

✓ At first, tests will be perform without sensor (test board and Software OK), then with the Munich planar pixel prototype (test board to be defined)

Up-coming design

 \checkmark Digital tier with the readout system: TOT (?), clustering (?)

✓ Analogue tier finalization and optimization

Backup Slides

October 14, 2009

<u> Mega</u>

Layout: some pictures...

October 14, 2009

Ecole IN2P3 de microélectronique 2009 - D. Thienpont

<u>(mega</u>

1,74 mm

VITESSE: a new international consortium for development of Vertical Integrated Technologies for Electronics and Silicon SEnsors (3D), gathers 15 institutes

- Fermilab (Batavia) and LBNL (Berkeley) in USA
- 6 IN2P3 laboratories (France) in particular LAL Orsay
- 6 Italian institutes
- University of Bonn (Germany)
- AGH University of Science & Technology (Poland)

This chip will be designed with the 3D Tezzaron process with wafers from 0.13 um Chartered Semiconductor

LAL **purpose**: sub-micron readout circuit dedicated for innovative high granular planar pixel sensors for ATLAS upgrade Pixel detector

Simulation conditions: Qinj = 1000 e-, Shaper gain = 1000; DAC = sIDb, 0001

October 14, 2009

Ecole IN2P3 de microélectronique 2009 - D. Thienpont

<u>()mega</u>

October 14, 2009

Ecole IN2P3 de microélectronique 2009 - D. Thienpont

()mega

Preamplifier simulation

- Paraphase behavior
 - Leakage current variation
 when leakage current increase
 output preamplifier voltage
 increase

mega

October 14, 2009

Leakage current variations

October 14, 2009

Discri

October 14, 2009

Discri

October 14, 2009

Gain preamp et shaper

October 14, 2009