

PLL design for clock multiplier in MAPS

Q.Sun 1,2, K. Jaaskelainen1, I. Valin1, G. Claus1, Ch. Hu-Guo1, Y. Hu1

1IPHC, Strasbourg 2BeiHang University, Beijing, China

Outline

- \Box *MAPS (Monolithic Active Pixel Sensors) in STAR experiment*
- \Box *PLL architecture*
- \Box *Building blocks*
- \Box *Measurements*

 \Box *Conclusion*

Extension of MIMOSA-26 to STAR

Pixel Vx Detector

College Final HFT (Heavy Flavour Tracker) - PIXEL sensor :

- $\%$ Ladder equipped with MIMOSA-26 chip with active surface \times ~1.7
	- **1088 col. of 1024 pixels** \rightarrow **1.1 million pixels**
- $\%$ Pitch : 18.4 μm \rightarrow (~20.0 x 18.8 mm²)
- $\%$ Integration time 200 μs
- $\&$ After power-on and configuration, the sensors are run continuously
- $\%$ The sensors readout path requires sending data over 6-8 m LVDS link at 160 MHz
- $\%$ Design from now \rightarrow fab. Feb. 2010
- $\%$ 1st physics data expected in 2011/12

Option :

- ª *A low frequency clock at 10 MHz will be multiplied to 160 MHz in each sensor by a PLL*
- ª *The same clock will also equip an optional 8b / 10b data transmission block*

See Guy Dozière's talk

PIXEL at 2.5 and 8 cm IST at 14 cmSSD at 23 cm

STAR Detector Upgrade

10 laddersOuter Layer: 30 ladders 10 sensors / ladder

Inner Layer:

Architecture of the PLL

- $\mathcal{L}_{\mathcal{A}}$ **The first PLL prototype has been designed and manufactured in a AMS 0.35 µm CMOS process**
- L. **The PLL requirements for clock multiplier in MAPS are :**
	- $\%$ Period jitter less than a few tenth of ps rms
	- $\&$ Low power consumption

PLL Characteristics

- **Various noise sources within the PLL contribute to the jitter and phase noise**
	- $\%$ Electronic noise (thermal and 1/f noise)
	- $\%$ Supply and substrate noise
- For high frequencies system, the effect of electronic noise is typically much less pronounced than **that due to substrate and power noise**

F.Herzel and B.Razavi, IEEE Trans. On Circuits And Systems-II: Analog and digital signal processing, vol. 46, N°.1, January 1999

- П **In MAPS, supply and substrate noise is a major noise source**
	- It results mainly of voltage fluctuations on the supply lines due to large current transients in digital and mixed circuitries (Pdigital_{mean} ~ 200 mW in M26)
- П **The VCO has the most significant contribution to noise**
	- $\%$ Design architecture less sensitive to supply and substrate noise
	- $\&$ Electronic noise minimized in the design

ш **Two voltage regulators were implemented to provide stable voltage supplies to the analog part**

Power supplies distribution

Building Blocks

The voltage regulator topology :

- $\%$ It is composed of the voltage reference provided by a bandgap circuit, the error amplifier, the pass transistor, the voltage divider R1-R2 and the load capacitor
- $\%$ It is similar to a two-stage amplifier
- $\%$ A high PSSR for the two-stage amplifier will reduce the output ripple of the regulator
- $\%$ The regulator structure uses a current buffer in series to the miller compensation capacitor to break the forward path and compensate the zero
	- very efficient both for gain-bandwidth improvement and for high frequency PSRR
	- **s** slight increase of complexity, noise and power consumption

Voltage regulator schematic

In the closed-loop configuration, the output ripple can be estimated by :

$$
Vout_R \cong \frac{1}{\beta} \left(Vbg_R + \frac{VDDD_R}{PSRR}\right)
$$

G. Palmisano and G. Palumbo, IEEE Trans. On Circuits And Systems-I: Fundamental, theory and applications, vol. 44, N°.3, March 1997

Frequency (kHz)

Meas. : PSNR for VCO supply (in red) and for CP supply (in blue)

Performance summary

Building Blocks

\blacksquare **The phase-frequency detector and charge pump structure :**

- $\%$ In order to avoid the dead-zone around the zero-phase error leading to increased noise, the state where UP and DN pulses are «high» simultaneously is enlarged by inserting a delay in the reset path
- **&** Optimized Delay
	- To minimize the dead zone and to limite the perturbation on the control voltage in the steady-state of the PLL
- $\%$ Dummy switch structure in the CP reduces the charge injection and the clock feedthrough mismatch

Building Blocks

$\overline{}$ **The voltage controlled oscillator topology :**

- $\%$ The delay cell contains a source coupled pair with symmetric resistive loads
- $\%$ Linear controllable resistors are desirable to achieve supply noise rejection in differential cell
- $\%$ By using symmetric loads, the first order noise coupling term are cancelled out, reducing the jitter caused by the common-mode noise present in the supply line
- $\%$ The cell delay changes with VBIAS which is generated dynamically by a replica bias circuit
- $\%$ A controllable tail current in the delay cell and in the bias circuit is used to adjust the cell delay
- $\%$ The output voltage swing is relatively maintained constant by varying the active resistance of the load in such a manner that the variation is inversing to the observed current change
- $\%$ The voltage to current converter provides a first order linear relationship between the oscillation frequency and the control voltage

VCO tuning range : 60 – 230 MHz

Control Voltage Vctrl (V) versus Freq. (MHz)

PLL Measurements

\mathbb{R}^n **Locking range :**

- $\%$ 138 300 MHz (operating frequency = 160 MHz)
- $\&$ Frequency range shift compared with the simulation results
- $\%$ Relatively stable in temperature

r. **Locking time :**

- $\%$ 60 µs
- $\%$ Good agreement with the simulation

PLL locking range as function of temperature 10 µs / div 10 µs / div

PLL locking time : the reference clock jumps from 10 MHz to 16.7 MHz

Measured Clock Jitter

 $\mathcal{L}_{\mathcal{A}}$ **Jitter as function of the reference frequency at room temperature, with a stable 3.3 V supply voltage :**

Period jitter

 $\mathcal{L}_{\rm{eff}}$ **Period jitter at 160 MHz with a peak amplitude of 400 mV square wave on the power supply line as function of the perturbation frequency :**

Conclusion and Perspective

- r. **The power consumption has been estimated at 7 mW**
	- $\%$ On-chip voltage regulators increase the power consumption of 20 $\%$
- The period jitter is less than 20 ps rms in a emulated noisy power supply **environment**
	- $\%$ The PLL can be employed as clock multiplier in MAPS

× **In the future, the same PLL clock will also equip a serial transmitter block**

- $\%$ The PLL jitter should be optimized by characterising the transmission system with cable connections and receivers in order to ensure the data transmission with low error rate
- $\%$ Programmable loop bandwidth

PLL performance summary