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Course Outline
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Digital Output
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What is A/D Conversion?
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• Quantization = division + normalization + truncation

• VFS is the Full-Scale range of ADC determined by Vref.

CT, CA DT, DA
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Quantization Error (or Noise)
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"Random" quantization error 
is usually regarded as noise.

N = 3

 
∆ /2 2

2 2
ε

-∆/2

1 ∆σ = ε dε =
∆ 12

Pε

0-∆/2 ∆/2
ε

1/∆

• N is large
• Vin >> ∆, Vin is active
• ε is uniformly distributed

Ref. [1]
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Flash ADC – Exhaustive Search

• Massive parallelism

• Very fast

• Reference ladder
consists of 2N equal
size resistors

• Input is compared
to 2N-1 reference
voltages

• Throughput = fs
• Complexity = 2N

E
nc

od
er

VFS Vi

fs

Strobe

Dout

2N-1
comparators

• Flash ADC is rarely used for beyond 6-8 bits due to complexity.
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Long Division (Decimal Case)

   
DivisorDividend Quotient Remainder

735 4 = 183 r 3

Step 1:
1st bit

Step 2:
2nd bit

Step 3:
3rd bit
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Quantization (Binary Case)

    
Vin LSB QN

Do

735 125 = 1,0,1 r 110

N = 3, FS = 1000, ∆ = 1000/8 = 125, Vin = 735

 
  

in
o

VD =

• The procedure is also known as "binary search".

Step 1:
1st bit

Step 2:
2nd bit

Step 3:
3rd bit
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Successive-Approximation (SAR) ADC

SAR = 1 comparator + 1 DAC + digital logic
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Binary Search – MSB Cycle

N = 3, FS = 1 V, ∆ = 0.125 V, Vin = 0.735 V
0.735V

0.5V

 VX = Vi – 0.5V;

 if VX > 0, MSB = 1, keep current VX  VX;

otherwise, MSB = 0, restore VX  VX + 0.5V;
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Binary Search – MSB-1 Cycle

N = 3, FS = 1 V, ∆ = 0.125 V, Vin = 0.735 V
0.235V

0.25V

 VX = VX – 0.25V;

 if VX > 0, MSB-1 = 1, keep current VX  VX;

otherwise, MSB-1 = 0, restore VX  VX + 0.25V;
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Binary Search – MSB-2 Cycle

N = 3, FS = 1 V, ∆ = 0.125 V, Vin = 0.735 V
0.235V

0.125V

 VX = VX – 0.125V;

 if VX > 0, MSB-2 = 1, keep current VX  VX;

otherwise, MSB-2 = 0, restore VX  VX + 0.125V;
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Quantization (Binary) Modified…

    
Vin LSB QN

Do

735 125 = 1,0,1 r 110

N = 3, FS = 1000, ∆ = 1000/8 = 125, Vin = 735

 
  

in
o

VD =

Step 1:
1st bit

Step 2:
2nd bit

Step 3:
3rd bit

• Always use the same divisor but amplify the residue.
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Algorithmic (Cyclic) ADC

• Fixed comparison threshold (VFS/2) + 1-b DAC + Residue Amplifier

• Modified "Binary Search"
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Bit Cycles

• Comparison  if VX < VFS/2, then bj = 0; otherwise, bj = 1

• Residue generation  Vo = 2·(VX - bj·VFS/2)

VX

Vo

VFS/20 VFS

VFS
bj=0 bj=1
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Pipelined ADC

• Algorithmic ADC loop unrolled  pipeline enables high throughput
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What happens with circuit offsets?

Ideal RA offset CMP offset

Nearly zero tolerance on circuit offset errors!!

Vi

Vo

VFS/20 VFS

VFS
b=0 b=1

Vi

Vo

VFS/20 VFS

VFS
b=0 b=1

Vi

Vo

VFS/20 VFS

VFS
b=0 b=1Vos

Vos

Vi

Do

VFS/20 VFS Vi

Do

VFS/20 VFS Vi

Do

VFS/20 VFS
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Over-range & Under-range Comparators

Vi

Vo

VFS/20 VFS

VFS
bj=0 bj=1

VFS/2
Bj+1=0

Bj+1=1

Vi

Do

VFS/20 VFS
00
01
10
11

Vi

Vo

VFS/20 VFS

VFS
bj=0 bj=1

VFS/2
Bj+1=0

Bj+1=1

Bj+1=-1

Bj+1=2

Vi

Do

VFS/20 VFS
00
01
10
11

1 CMP 3 CMPs
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Redundancy (a.k.a. DEC or RSD)

Original w/ Redundancy

• 4-level (2-bit) DAC required instead of 2-level (1-bit) DAC

Vi

Vo

VFS/20 VFS

VFS
b=0 b=1

Vi

Vo

VFS/20 VFS

b=0 b=1b=-1 b=2
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Vi

Vo

VFS/20 VFS

VFS
bj=0 bj=1

VFS/2
Bj+1=0

Bj+1=1

Bj+1=-1

Bj+1=2

Vi

Do

VFS/20 VFS
00
01
10
11

Complementary Analog-Digital Information

• Max tolerance of 
comparator offset is 
±VFS/4  simple 
comparators

• Key to understand 
redundancy:

 FS o
ji

VV = +
2

Vb
2

1 bit

1 FS

 
 o

j
Vb = 0
2
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From 1-bit to 1.5-bit Architecture

1-bit
No redundancy

½ bit

½ FS




 oVb = 0
2
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 oVb = 0
2

From 1-bit to 1.5-bit Architecture

½ bit

½ FS




 oVb = 0
2

½ bit

½ FS
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From 1-bit to 1.5-bit Architecture

• Center the two thresholds  optimal symmetric offset tolerance




 oVb = 0
2




 oVb = 0
2



IN2P3, 5/20/15 - 25 - © Y. Chiu

The 1.5-bit Architecture

• 3 decision levels 
→ ENOB = log23 = 1.58

• Max tolerance of comparator 
offset is ±VR/4

• An implementation of the 
Sweeny-Robertson-Tocher
(SRT) division principle

• The conversion accuracy 
relies on the loop-gain error, 
i.e., the gain error and 
nonlinearity

• A 3-level DAC is required

Can the same technique be applied to SAR?

  o i RV = 2 V - b -1 V

Ref. [2]
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1.5-bit Multiplier DAC (MDAC)

• 2X gain + 3-level DAC + subtraction all integrated

• Can be generalized to n.5-bit architectures

Vo

Vi

0
-VR

VR

Decoder

Φ1 C1

Φ1 C2

Φ2

Φ1e

A

Φ2

-VR/4

VR/4

  R
1

2
i

1

21
o V

C
C1bV

C
CCV 


   o i RV = 2 V - b -1 V



IN2P3, 5/20/15 - 27 - © Y. Chiu

2.5-bit Multiplier DAC (MDAC)

• 4X gain + 7-level DAC + subtraction all integrated

  o i RV = 4 V - b -3 V

b=1 b=3 b=5b=0 b=2 b=4 b=6

Vi

Vo

-5VR/8 VR/8

VR/2

-VR/2

0

-3VR/8 -VR/8 5VR/83VR/8-VR VR

VR
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Vi
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-VR
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Φ1e
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Φ2
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6
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1

6 CMP’s

Φ1 C1
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Φ2

C3

C4

Φ1

Φ1

Φ2
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b
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Residue Transfer Function (2.5b MDAC)

• Only half of the internal dynamic range is used under ideal condition!

b=-3

Vi

Vo

VR/2

-VR/2

0

-VR VR

VR

VR
1 VR

2 VR
3 VR

4 VR
5 VR

6

b=-2 b=-1 b=1 b=2 b=3b=0

overflow
range

underflow
range

normal
range
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With comparator offset

b=-3

Vi

Vo

VR/2

-VR/2

0

-VR VR

VR

VR
1 VR

2 VR
3 VR

4 VR
5 VR

6

b=-2 b=-1 b=1 b=2 b=3b=0

os

overflow
range

underflow
range

normal
range
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Internal Redundancy

• Comparator and amplifier offsets tolerated by internal redundancy.

overflow
range

underflow
range

normal
range

-3

Vi

Vo

VR/2

-VR/2

0

-VR VR

VR

VR
1 VR

2 VR
3 VR

4 VR
5 VR

6

-2 -1 1 2 30
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How does Redundancy work in SAR?

• Binary search is efficient, but displays zero error tolerance.
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+FS

-FS

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

in

X

Binary Search Revisited

• When everything is ideal…
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+FS

-FS

1111
1110

1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

in

X

1101

Binary Search w/ Dynamic Error

• Settling error, comparator hysteresis etc.
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Overlapping Search Ranges

• Results indicate decision trajectory, no longer binary-coded.

+FS

-FS

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

in

X

1

1
0

0
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Redundancy of Sub-binary Search

• Dynamic errors absorbed by redundancy.

+FS

-FS

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

in

X
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SAR Redundancy

• Redundant conversion consumes more bit cycles, but 
can recover intermediate decision errors.

• Redundancy can be exploited to expedite conversion 
progress or to save power.

• DAC levels (matching) still need to be accurate.

(will come back to this later…)
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Presentation Outline

• Principles of Multistep A/D Conversion

• Architectural Redundancy

• Error Mechanisms and Digital-Domain Calibration

• Error-Parameter Identification
– PRBS Test-Signal Injection (sub-ADC, sub-DAC, input)

– Two-ADC Equalization (ref.-ADC, split-ADC, ODC)

• Energy Efficiency and Trend

• Summary



IN2P3, 5/20/15 - 38 - © Y. Chiu

Pipelined ADC Errors (I)

• Capacitor mismatch

• Op-amp finite-gain error and 
nonlinearity

• Charge injection and clock 
feed-through (S/H)

• Settling error

 o i RV = 2 V - d V

 

 

 

 


      

 
 

1 2 2
So i/H R

1 2 1 2
1 1

o o

C C Ct f VC C C CC C
VA

V

A

V

V

d

1.5b MDAC
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Pipelined ADC Errors (II)

dj -3 -2 -1 0 1 2 3

dj,1 -1 -1 -1 -1 -1 0 1

dj,2 -1 -1 -1 0 1 1 1

dj,3 -1 0 1 1 1 1 1

DAC bit-encoding scheme

dj = dj,1 + dj,2 + dj,3

...

       
 


   

43
j,

j+1
j r1 j,2 j,3 j

2
1

1
+

V
V V

C + C ACC C+ += +C C C Vd d
C

d

2.5b MDAC
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RA Gain Error and Nonlinearity

R R

R

R

i

R

R

R

o

iR R

o
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RA Gain Error and Nonlinearity

R R

R

R

i

R

R

R

o

iR R

o

• Raw accuracy is usually limited to 10-12 bits w/o error correction.
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R R

R

R

i

R

R

R

o

RA Gain Error and Nonlinearity

• Raw accuracy is usually limited to 10-12 bits w/o error correction.

iR R

o
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Digital
Computation

The Basic Idea of Digital Calibration

ADC

Unknown
System

System
Inversion

 
  

 
1o

2i

V 1- 1
βA

-C
CV

• match C1 and C2
• make βA very large

Digital soln:
• any constant C1 and C2
• any constant A is fine

Analog soln:e.g., SC amplifier:

Calibration = efficient digital processing to undo certain analog errors
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Two Essential Components of Dig. Cal.

1. A digital-domain technique (e.g. equation) to recover 
accurate analog information from raw digital output
– Treat analog precision or linearity only
– Neglect small consequence on SNR

2. An algorithm to identify the error parameters
– Foreground vs. Background techniques

 
  

 
1

2
CL

1C
C

A 1-
βA

- = #
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Linear MDAC Correction

      
 


   j,1 j,2 j,3j r j+

31 2
1

4CC C C + C A+ += +C C CV V Vd d
C

d

 ideal residue function

     
 


   j,1 j,2 j,3

3j j+1

r

1 2

r

4CC C C + C A+ += +C C C
d dV V

V V C
d

    

 
j,1 j,2 j,j 3 j

j,

,1 j,2 j,3j j+1

j,k j+k j
k

1

β + β + β= + α

=

d d dD D

β D+ αd

Digital representation:

     j j
j,1 j,2 j,

+1 j+1

r r
3 j

r

V V V
V V

1 1 1 1+ += + = +
V

d d
4 4

d d
4 4

Analog residue function:

Normalized residue function:

 error parameters:  { αj, βj,k }
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Bit-Weight (Radix) Correction

    ...

...

     

  

1 in

j j j+1 j+1 j+2 j+2 j+1 j j-1

j j+1 j+j j+1 j+22

D =D

=...+ d β + d β + d β +... α α α

=...+d +d +d +γ γ γ  weighted sum of ALL bits!
(bit weight or radix error)

 segmental offset

For 1-b or 1.5-b MDAC:

     
     

...

...

  

1 in

j j+1 j+2
j j+1 j+j j+1 j+2

j j j+1 j+1 j+2 j+2

2

j j+1 j+2
j j+1 j+2

D =D
d d d

=...+ + + +
2 2 2
d + d + d +

=.

1+∆ 1+∆ 1+∆

d ∆ d ∆ d ∆
..+ + + +

2 2 2

Alternatively,
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Bit-Weight (Radix) Correction

Vi-VR VR

Do

Vi-VR VR

Do

Vi-VR VR

Do

radix error:
needs multiplication

segmental offset:
addition only

d1=-1 d1=1d1=0 d1=-1 d1=1d1=0 d1=-1 d1=1d1=0

1.5b MDAC
residue nonlinearity
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Nonlinear MDAC Correction

       
 


   

43
j,

j+1
j r1 j,2 j,3 j

2
1

1
+

V
V V

C + C ACC C+ += +C C C Vd d
C

d

      
 


   

431 2
j,1 j,2 j,3

j+1j j+1

r r

C + C ACd dC C+ += +C
VV V

V V
d

C C C

     

   
j,1 j,2 j,3j,1 j,2 j,3j j+1

j
m

j,k,k j+1 j,m
k m

d β + β + β= + f

β + α

d dD D

d D

Digital representation:

Analog representation:

Normalized analog representation:

 error parameters:  { αj,m, βj,k }

Next problem: how to determine {αj,m, βj,k} precisely?
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Let’s try to push this…

-70 dBFS

"Give me a place to stand on, 
and I will move the Earth…"

Corrected w/ 9th-order power series

LDrawn

0.15μm
VDD

1.2V

Correcting nonlinearity:

Archimedes, 200 BC
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On nonlinear correction

• Memory-less polynomial computation is efficient
– A few coefficients fits/predicts full-range nonlinearity 

(requiring digital multipliers and adders mostly)
– Caveat 1: coefficients depend on signal statistics!
– Caveat 2: coefficients depend on PVT variations!

• Piecewise-linear or lookup table can be useful
– Memory, digital power, and cost
– Complexity and convergence time (esp. tracking speed in 

background mode)

Solution needs to be practical after all…
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0 3/8 1/8 9/32 3/8

10 6 3.5 2 1

1.6 1.67 1.71 1.75 2

+FS

-FS

V
in

SAR Redundancy Forms (I)

• Unit-Element DAC

• Best matching

• Arbitrary decision 
threshold  arbitrary 
radix

• Redundancy @ each bit

• DAC resolution slightly 
higher

• Binary-to-Thermo 
encoder (slow)

Radix:
Ref. [3]
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0 1/2 1/4 1/2 3/8

8 4 4 2 1

2 2 1 2 2

+FS

-FS

V
in

SAR Redundancy Forms (II)

• Binary DAC

• Good matching

• Periodic redundancy 
non-uniform radix

• Redundancy @ selective 
bits

• SAR logic slightly more 
complex

• Can also use UE DAC

Radix:
Ref. [4]
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0 ... ... ... ...

1.864 1.863 1.862 1.86 1

1.86 1.86 1.86 1.86 1.86

+FS

-FS

V
in

SAR Redundancy Forms (III)

• Sub-binary DAC

• Poor matching

• Uniform redundancy 
uniform radix

• Redundancy @ each bit

• Simple layout, simple 
SAR logic (fast)

• Cannot use UE DAC

• Must calibrate DAC

Radix:
Ref. [5]
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Sub-binary DAC – Construction

Vi

DAC Do

VDAC

VX

d0

dN-1

C0·1.86N-1

CN-1

C0·1.86N-2

CN-2

C0·1.86N-3

CN-3

C0·1.86N-4

CN-4 …

• Hard-coded in 
analog form

• No B2T encoder

• Simple layout

e.g., Radix = 1.86

Ref. [5]
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Sub-binary DAC – Transfer Function

N = 14

 = 011…1  VH

 = 100…0  VL

Note: only one transition
edge shows up

VL VH
Vi

Redundant 
region

1

Do

2

2N

2N-1

0 FS
MSB = 1

MSB = 0

D
o

May 20, 2015 IN2P3 Summer - 55 -
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Sub-binary DAC – Quantization

Vi

DAC Do

VDAC

VX

d0

dN-1

 

 

 
 
 

 
  

 







j

j

≈ 2d -1

2d -1

i
o

FS

N-1
j

j=0 j

j
j

N-1

=0

Vd =
V

=

C
C

w

C0·1.863

C3

C0·1.862

C2

C0·1.86

C1

C0

C0

d3 = 1
d2 = 0

d1 = 0
d0 = 1 



3

DAC R j
j=0

3

i
j=0

j

j

Q = V 2d -1

≈ CV

C

+ + +

Radix = 1.86

Ref. [5]
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D
o

d o

Sub-binary DAC – Digital Correction

 jw = bit weights

Nraw = 14 Nnet = 12

  
 

 
 j2d -1
N-1

i
o

j=0
j

FS

wVd = =
V

Next problem: how to determine {wj} precisely?
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Presentation Outline

• Principles of Multistep A/D Conversion

• Architectural Redundancy

• Error Mechanisms and Digital-Domain Calibration

• Error-Parameter Identification
– PRBS Test-Signal Injection (sub-ADC, sub-DAC, input)

– Two-ADC Equalization (ref.-ADC, split-ADC, ODC)

• Energy Efficiency and Trend
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Error-Parameter Identification Techniques (BG)

• With PRBS test-signal injection (dither)
– Sub-ADC injection (comparator dither)
– Sub-DAC injection (DAC dither)
– Input injection (Independent Component Analysis)

• With two-ADC equalization (test signal free)
– Reference-ADC equalization (training sequence)
– Split-ADC equalization (blind)
– Offset double conversion (ODC) (blind, single ADC)

Parameter extraction is what the game is all about…
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Recent BG Digital Calibration Techniques

ADC2 x2(n) y2(n)

e(n)Vin

Lewis [11], Chiu [12], McNeill [13]…

ADC Adaptive 
DPP

x(n)

y(n)
e(n)

T(n)

Vin

Temes [6,7], Lewis [8], Galton [9,10]…

Two-ADC
equalization

PRBS injection
(Dither)

x1(n)

Adaptive 
DPP

ADC1
Adaptive 

DPP

y1(n)
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PRBS Test-Signal Injection



IN2P3, 5/20/15 - 62 - © Y. Chiu

Comparison of PRBS Injection Techniques

• Sub-ADC injection
– considered as dynamic comparator offset, no removal needed
– higher sub-ADC resolution (injection and ADC matching not req’d)
– works only with busy input

• Sub-DAC injection
– needs to be removed in digital output
– higher sub-DAC resolution (injection and DAC matching req’d)
– can work with quiet input

• Input injection (sub-DAC + sub-ADC)
– needs to be removed in digital output
– No impact on sub-ADC or sub-DAC resolution
– works only with busy input
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PRBS Test-Signal Injection
(Sub-ADC Injection)
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Sub-ADC Injection – Comparator Dither

• In steady state, analog gain (G1) and digital gain (G1
-1) cancel exactly.

• 2-k ≤ ¼ to avoid overflow in residue output.
• No need to match injection scaling factor (2-k) to the sub-ADC thresholds.

residue
path

Converge@

1D T = 0
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Sub-ADC Injection – Comparator Dither

• In steady state, analog gain (G1) and digital gain (G1
-1) cancel exactly.

• 2-k ≤ ¼ to avoid overflow in residue output.
• No need to match injection scaling factor (2-k) to the sub-ADC thresholds.

Converge@

1D T = 0

-VR/2

0

d1=1 d1=2

-VR

VR/2

VR

¼ bit
½ bit

...

...

typ. k = 2
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Exploiting Internal Redundancy

• Input falling in shaded region randomly sees one of two RTF’s  dithering.
• Decision threshold needs not to be accurate or matched to each other.
• Digitization outcome is independent of PRBS when ADC is ideal !!

Ref. [14]
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Identifying Residue Gain Error

1 1 ideal 1 ideal 1If V { region 1 }  and  T = +1, D =D ; if T = -1, D =D -δ

 1 2 31 1 1
1 1 1Segmental offset : D = + d + d +...d +d δ
4 8 16

 

1 1 ideal 1 1 idealIf V { region 2}  and  T = +1, D =D +δ ; if T = -1, D =D
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Identifying Residue Gain Error

       1 1 1δ =δ +μ D Tn+1 n n n

       

   

 

           

   

 

1 1 1ideal idealideal 1 ideal 1

1 11 1

1 1

1 1D T = Pr V { region 1 } Pr V { region 2 }D - -DD -δ D +δ
2 2
1 1= δ Pr δ PrV { region 1 } V { region 2 }
2 2
1= δ Pr V { region 1 or 2 }
2

   1 1D T 0δ  removed

Calculating correlation:

LMS learning:

• Correlation reveals information about segmental offset.
• Exact size of shaded region is not important (only affects Pr(.)).
• Key observation:  if ADC is ideal, D1 must be uncorrelated to T.
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PRBS Test-Signal Injection
(Sub-DAC Injection)
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ˆ
2D

Sub-DAC Injection – DAC Dither

Converge@

ˆ 2 T = 0D

• In steady state, analog gain (G1) and digital gain (G1
-1) cancel exactly.

• 2-k ≤ ¼ to avoid overflow in residue output, DAC adds 2 bits minimum.
• Injection bit scaling factor (2-k) must match to the sub-DAC unit elements.

residue
path
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Sub-DAC Injection – DAC Dither

-VR/2

0

d1=1 d1=2

-VR

VR/2

VR

¼ bit
½ bit

...

...

typ. k = 2

• In steady state, analog gain (G1) and digital gain (G1
-1) cancel exactly.

• 2-k ≤ ¼ to avoid overflow in residue output, DAC adds 2 bits minimum.
• Injection bit scaling factor (2-k) must match to the sub-DAC unit elements.

ˆ
2D

Converge@

ˆ 2 T = 0D
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Signal-Dependent DAC Dither

Vj (VR) T = +1 T = -1

-1  -⅜ 0 0

-⅜ -⅛ 0 VR

-⅛ ⅛ -½ VR ½ VR

⅛ ⅜ -VR 0

⅜ 1 0 0

PRBS Injection Table

• PRBS only injected when input falls within the shaded region.
• Extra comparators needed to instrument the SD dither.

Ref. [15]
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Opportunistic DAC Dither

Vin/VR

res in RV = 4V - V D

 res in RV = 4V - V D + PN
   




in R in
r

R
es

th

in

4V - V D'+PN , V V
4V - V D, o.w.

V =

V
re

s/V
R

0-1 1
1

-1

0

V
re

s/V
R

1

-1

0

1

-1

0

-2

2

Vin/VR

V
re

s/V
R

0-1 1

Vth Vth Vth

0-1 1

GapGap

• When redundancy is not ample, blind injection requires large DR.
• Without additional comparators, detecting Vth vicinity is difficult.
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Exploiting Comparator Metastability

Ready

Q+

Vin-Vth

Comparator
resolving time

Time

Q
+,

 Q
-

Ready=0

Normal output

Metastable output

Ready=1

Time

Q
+,

 Q
-

DFF

T0

Vin-Vth small

Vin-Vth large

0

Q-

• Comparator resolving time indicates proximity of input.
• Proximity detector also functions as metastabilty detector/resolver.



IN2P3, 5/20/15 - 75 - © Y. Chiu

12b 160MS/s CMOS Prototype (40nm)

• (5b + 8b) synchronous two-step pipelined SAR architecture.
• First-stage capacitor weights identified w/ opportunistic DAC dither.
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Die Photo

40nm low-leakage CMOS process
(active area = 0.042mm2)

Integrator
+

DAC

MDAC1 MDAC2 MDAC3 MDAC4

Sub-
ADC1

Sub-
ADC2

Sub-
ADC3

Sub-
ADC4

Sub-
ADC5

Clock
&

PN Gen.

300μm

13
9μ

m

Ref. [16]
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Measured ADC Dynamic Performance
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Fs = 160MHz
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Fs = 160MHz after cal. Fin = 25MHz after cal.
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Power Consumption

Analog 1.1V
2.8mW
(53.6%)

Digital 1.1V
2.2mW
(42.2%)

• Total power is 4.96mW at 160MS/s operation.

Ref. [16]
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PRBS Test-Signal Injection
(Input Injection)
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Direct Input Injection

• Algorithm works reliant on the independence b/t input and T.
• Multi-parameter extraction is possible by Independent Component Analysis.
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Independent Component Analysis (ICA)

  o 1 2D = α D +β D -k T

   
   

 
 

n+1 n α 1 o 2

n+1 n β 2 o 1

α = α -μ g D g T
β =β -μ g D g T

Hérault-Jutten (HJ) stochastic de-correlation:

In our simulation, we picked g1(x) = x and g2(x) = x3.

1

2

ICA 
Algorithm 

o i

Only two parameters need 
to be identified.

Ref. [17]
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Simulation Results

1 1.1 1.2 1.3 1.4 1.5
1
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0
ENOB=11.99

H-J Learning Trajectory
Before After

• Typical learning pattern of the H-J algorithm
• Steady-state coefficient fluctuation causing low-level spurs
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ICA extended to nonlinear treatment

   2 3
o i 0 1 i 2 i 3 iV = f V a +a V +a V +a V +...

        j
j j j ob n+1 = b n -μ D n T n        j =1,...,5

Error model:

Update equations:

Ref. [17]
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An ICA Approach for SAR Calibration

ˆ id T

d̂

Digital Post-Processing

• ICA recovers 2X speed at the cost of slower convergence.
• ALL bit weights {wj} are learned simultaneously!

T: PRBS
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Prototype SAR ADC w/ ICA

Sub-binary DAC Ref. [18]



IN2P3, 5/20/15 - 86 - © Y. Chiu

Prototype SAR ADC w/ ICA

ICA

90nm CMOS, 0.05mm2

• 12b, 50MS/s in BG mode

• (3.3+1.4)mW power (45fJ/step)

• CICC Best Paper Award

Ref. [18]
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Measurement Results

Learning Curve

Dynamic Performance

• Gear shifting helps stabilize the steady-state fluctuations.
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Two-ADC Equalization
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Two-ADC Equalization Techniques

• Reference-ADC equalization
– Slow-Fast two-ADC architecture to accomplish accuracy and 

throughput simultaneously using adaptive equalization
– Two (different) ADC’s needed, subject to skew error without SHA

• Split-ADC equalization
– Two almost identical ADC’s employed for blind equalization
– Two ADC’s needed, subject to skew error without SHA

• Offset double conversion (ODC)
– Self-equalization by digitizing every sample twice with opposite DC 

offsets injected to the input
– Single ADC with modified timing in background mode
– Conversion throughput halved in background mode
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Two-ADC Equalization
(Reference-ADC)
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Reference-ADC Equalization

• Concept inspired by adaptive equalization in digital comm. receivers

• Divide-and-conquer approach to achieve analog speed and accuracy

Ref. [11,12]
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EQZ of Time-Interleaved ADC Array

• ALL paths are aligned to the unique ref. ADC after equalization.

ADC1

T/H

Ref.
ADC

ADC10

ADF1

ADF10

D1

DLL

Ф1
Vin

1X

1X

D10

Dr

Ф10

Ф1

Ф10

Фr

Ф

Ф′

Digital
Cal.
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Prototype 10-way TI-ADC Array

Performance Comparison
(@ time of publication)

Time CMOS 
Process

Speed
[MS/s]

SFDR
[dB]

FoM
[fJ/step]

ISSCC06 0.13µm 600 43 220

ISSCC08 0.13µm 1250 48 480

VLSI08 65nm 800 58 280

ISSCC09 0.13µm 600 65 210

Die photo

• The 2009 DAC/ISSCC Student Design Contest Award

Ref. [5]
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ADC Array EQZ – Measured Spectra

(fs = 600MS/s, fin = 7.8MHz, Ain = 0.9FS, 16k samples)

Ref. ADCAfter Cal.
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Two-ADC Equalization
(Split-ADC)
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Split-ADC Equalization

Vi

Vo

ADCA

Vi

Vo

ADCB

• Blind equalization w/o reference possible by offsetting the RTFs

• Fast convergence due to zero-forcing equalization

Ref. [13]
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Vin

dB

dA

Zero Forcing

Radix correction Zero-forcing EQZError observation

Vin

dB

dA

ε = 0
ε = dB−dA
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Two-ADC Equalization
(Offset Double Conversion)
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Offset Double Conversion (ODC) for SAR

• ODC enables zero-forcing self-equalization.
• ALL bit weights {wj} are learned simultaneously!

Digital Post-Processing
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How to determine Bit Weights?

Is the transfer curve shift-invariant?
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How to determine Bit Weights?

Is the transfer curve shift-invariant?
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How to determine Bit Weights?

Is the transfer curve shift-invariant?
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How to determine Bit Weights?

• Shift-invariant ONLY when the transfer curve is completely linear!

• Non-constant difference b/t D+ and D− reveals bit weight information.
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Prototype SAR ADC w/ ODC

Sub-binary DAC ODC Aux. DAC

0.13µm CMOS, 0.06mm2

• 12b, 45MS/s in FG mode

• 3mW power (36.3 fJ/step)

• Most read JSSC article Nov. 2011

C0C1C13

SAR Logic

–VR

d0d1d13

CMPp

+VR

VX

C0

Vin

C13,d C6,dC∆

Ready
CMPn

CLKCLK

ACLK

Ref. [19]
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Measurement ADC Spectra (BG Mode)
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SFDR = 94.6dB
THD = -89.1dB
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Convergence Time (BG Mode)
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22000 samples @ 22.5MS/s ≈ 1ms
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Comparison with 12b ADCs
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(@ time of publication)
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Summary of Dig. BG Cal. Techniques

Method Parameter Test signal Injection point Reference†

DNC + GEC { βj,k, αj,m } multi PRBS sub-DAC [9,10,20-24]
Split capacitor { ∆j } 1 PRBS sub-DAC [25,26]
Sig.-dep. dither { γj } 1 PRBS sub-DAC [15,16]

GEC + SA { γj } 2 PRBS sub-ADC [27,28]
Statistics { αj,m } 1 PRBS sub-ADC [29,30]
Fast GEC { γj } 1 PRBS sub-ADC [31]

ICA { γj }, { αj,m } 1 PRBS input [17,18,32,33]
Ref. ADC { βj,k, αj,m } n/a n/a [5,11,12,34-36]

Virtual ADC { βj,k, αj,m } offset sub-DAC [37,38]

Split ADC
{ αj,m } n/a n/a [13,39]

{ βj,k, αj,m } n/a n/a [40]

ODC
{ γj } offset input [19]

{ βj,k, αj,m } offset input [41]
† References are furnished at the end of the slides.
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Presentation Outline

• Principles of Multistep A/D Conversion

• Architectural Redundancy

• Error Mechanisms and Digital-Domain Calibration

• Error-Parameter Identification
– PRBS Test-Signal Injection (sub-ADC, sub-DAC, input)

– Two-ADC Equalization (ref.-ADC, split-ADC, ODC)

• Energy Efficiency and Trend

• Summary
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ADC Figure-of-Merit (FoM)

 
     

W ENOB

P JouleFoM
2 BW 2 Conversion -Step

BW: min{fs/2, ERBW}

ERBW: effective resolution BW

"Energy Efficiency"

P: power consumption

ENOB: effective number of bits

Walden FoM:

   
  

 

ENOB

S 10
2 BW 4FoM 10log dB

P
Schreier FoM:

• Walden FoM is intuitive but penalizes noise/matching-limited designs.

• Schreier FoM is more fair to high dynamic range designs.



IN2P3, 5/20/15 - 111 - © Y. Chiu

Performance, Efficiency, and Power

    
α/2αENOBPerforman = 2 BW Hz pce Ste

Performance = Speed × SNR
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Note: α = 2 - 4
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Performance–Efficiency (PE) Chart
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PE Chart: Pipelined ADC (<2005)
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PE Chart: SAR ADC (<2005)
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To conclude…

Thank you for your attendance!
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