Characterization of Digital Cells

X. Llopart

Outline

- Introduction to cell characterization
- Liberate tool (Cadence)
- Characterization example using a combinatorial cell (AND2)
- Applications in HEP

Disclaimer...

- My origins are full custom analog designer
- This presentation is based in my acquired knowledge using ELC and Liberate tools... but other tools are available
- My objectives are:
 - 1) Transfer the advantages of using a Library Characterizer tool
 - 2) Change the way we can design chips \rightarrow towards more digital top designs

Objective of Cell Characterization

- Create a set of high quality models of a standard cell library that accurately and efficiently model cell behaviour
- This set of models are used by several different digital design tools for different purposes

Digital flow in deep submicron technologies

- Nanometre geometries (<65nm) require an increase number of library views:
 - Issues related to leakage power and process variation

Nanometer Requirements	130 nm	65 nm	28 nm
PVT	3 (fast,typ,slow)	3 (fast,typ,slow)	3 (fast,typ,slow)
Leakage	n/a	3 Vths	3 Vths
Voltage Scaling	n/a	2 Voltages	2 Voltages
Temperature	n/a	n/a	2 Temperatures
Yield	n/a	n/a	2 Yield
Total Views	3	18	72

Liberate reference manual

What is a Library Characterizer?

- <u>Creates electrical views (timing, power and signal integrity) in industry standard formats such as</u> Synopsys Liberty (.lib) format
- Normally it <u>requires only the foundry device models</u> and the extracted cell netlists from which it will create all the required electrical views
- By automating the process for generating views, it <u>ensures that the library's functional, timing, power and</u> <u>signal integrity values are both accurate and complete</u> thus avoiding potential chip failures caused by missing or bad library data

Library Characterizer packages

- The tools needed are:
 - Analog simulator (Hspice, Spectre,...)
 - Netlist of the cells (parasitics extracted)
 - Device models from the technology vendor
 - Timing arcs
 - ... and a lot of careful simulations \rightarrow CERN 250nm IBM rad-hard library
- Many vendors provide today packages (bunch of scripts) which automatizes the process:
 - Kronos (Mentor Graphics)
 - Synopsys SiliconSmart
 - Silvaco
 - ELC
 - ALTOS
 - Liberate (Cadence)

NLDM, CCS and ECSM formats

- NLDM: non-linear delay model
 - Input transition vs capacitive load time table
 - Valid if technology >=130nm
- New physical effects (<130nm) mean that the NLDM is no longer accurate enough:
 - Input capacitances have become more complex
 - Interconnect net impedance dominates cell delay
 - Voltage drop across the device can have a significant effect on delays
- CCS → Composite current source (ccsn, ccsp)
- ECSM → Effective current source model (ecsmn, ecsmp)

Timing Arcs

- Timing arc is a component of a timing path
- Types of arcs:
 - Cell Arcs: Between an input pin and output pin of a cell
 - Defined in Liberty files (.lib)
 - Net Arcs: Between driver pin of a net and load pin of a net
 - Calculated inside P&R tool \rightarrow requires parasitic RC technology information
- Cell Arcs:
 - − Combinatorial cells (INV, NAND...) → IO arcs
 - − Sequential cells (DFF, LAT...) → Edge sensitive (clk \uparrow , clk \downarrow), Reset,...

Timing Cell Arc Concepts

- Timing arcs can be delay arcs or constraint arcs
- Each timing arc has a startpoint and an endpoint:
 - The startpoint can be an input, output, or inout pin
 - The endpoint is always an output pin or an inout pin
- The only exception is a constraint timing arc, such as a setup, hold, recovery or removal constraint between two input pins
- related_pin: This attribute defines the pin or pins representing the startpoint of a timing arc

• Timing arc generation and definition must be understood in case cell recognition is not achieved

Liberate

20th May 2015

Liberate (Cadence)

- ELC (Encounter Library Characterizer) not available since January 2015
- Altos renamed to Liberate on 2014
- Europractice includes the Liberate package (Altos until last year):
 - Liberate: Standard cell and complex I/O characterization
 - Liberate MX: Memory characterization
 - Liberate LV: Library verification package
 - Liberate AMS: Mixed-Signal characterization (Oct 2014)

Example AND2

AND2 netlist

// Library name: cern cmos8rf hd tsmc hvtnW // Cell name: AND2 B XL TSMC HVTN // View name: av extracted subckt AND2_B_XL_TSMC_HVTN A B GND VDD Z c1 (VDD GND) capacitor c=2.00781e-16 c2 (A GND) capacitor c=1.72585e-16 c3 (B GND) capacitor c=1.40005e-16 c4 (Z GND) capacitor c=5.9908e-17 c5 (net58 GND) capacitor c=2.56284e-17 c6 (net09 GND) capacitor c=9.28723e-17 c7 (\1\:A GND) capacitor c=1.16705e-16 c8 (\1\:B GND) capacitor c=6.54007e-17 c9 (\5\:net09 GND) capacitor c=6.22271e-17 rj10 (net09 \3\:net09) resistor r=31.2646 c=0 rj12 (\3\:net09 \5\:net09) resistor r=22.4521 c=0 rj11 (\3\:net09 \4\:net09) resistor r=19.2893 c=0 TPB (\8\:net09 \1\:B \5\:VDD VDD) pch I=1.3e-07 w=3.2e-07 ad=0.0608p \ as=0.22828p pd=0.7u ps=2.37u nrd=0.59375 nrs=2.22925 sa=2.95e-07 sb=8.8e-07 m=1 TPA (\6\:VDD \1\:A \8\:net09 VDD) pch l=1.3e-07 w=3.2e-07 ad=0.2669p \ as=0.0608p pd=2.37u ps=0.7u nrd=2.60645 nrs=0.59375 sa=8.05e-07 sb=3.7e-07 m=1 M0 (\1\:VDD net09 \2\:Z VDD) pch l=1.3e-07 w=6.5e-07 ad=0.3715p \ as=0.28275p pd=2.57u ps=2.17u nrd=0.87929 nrs=0.669231 sa=4.35e-07 sb=1.22989e-06 m=1 TNB (net58 \4\:B \4\:GND GND) nch_hvt l=1.3e-07 w=3e-07 ad=0.057p \ as=0.22687p pd=0.68u ps=2.37u nrd=0.633333 nrs=2.52083 sa=2.95e-07 sb=9.85e-07 m=1 TNA (\9\:net09 \3\:A net58 GND) nch hvt l=1.3e-07 w=3e-07 ad=0.1425p \ as=0.057p pd=1.55u ps=0.68u nrd=1.58333 nrs=0.633333 sa=8.05e-07 sb=4.75e-07 m=1 M1 (\1\:GND \5\:net09 \1\:Z GND) nch hvt l=1.3e-07 w=3e-07 ad=0.347p \ as=0.1215p pd=2.57u ps=1.41u nrd=3.85556 nrs=1.35 sa=4.05e-07 sb=1.05854e-06 m=1 ends AND2 B XL TSMC HVTN // End of subcircuit definition.

// Library name: cern cmos8rf hd tsmc hvtnW // Cell name: AND2 B XL TSMC HVTN // View name: schematic subckt AND2_B_XL_TSMC_HVTN A B GND VDD Z M0 (Z net09 VDD VDD) pch l=130n w=650n ad=221f as=221f pd=1.98u \ ps=1.98u nrd=292.308m nrs=292.308m sa=340n sb=340n m=1 TPA (net09 A VDD VDD) pch l=130n w=320n ad=108.8f as=108.8f pd=1.32u \ ps=1.32u nrd=593.75m nrs=593.75m sa=340n sb=340n m=1 TPB (net09 B VDD VDD) pch l=130n w=320n ad=108.8f as=108.8f pd=1.32u \ ps=1.32u nrd=593.75m nrs=593.75m sa=340n sb=340n m=1 M1 (Z net09 GND GND) nch hvt l=130n w=300n ad=102f as=102f pd=1.28u \ ps=1.28u nrd=633.333m nrs=633.333m sa=340n sb=340n m=1 TNB (net58 B GND GND) nch_hvt l=130n w=300n ad=102f as=102f pd=1.28u \ ps=1.28u nrd=633.333m nrs=633.333m sa=340n sb=340n m=1 TNA (net09 A net58 GND) nch_hvt l=130n w=300n ad=102f as=102f pd=1.28u \ ps=1.28u nrd=633.333m nrs=633.333m sa=340n sb=340n m=1 ends AND2 B XL TSMC HVTN // End of subcircuit definition.

Define_cell and define_arc

if {[ALAPI_active_cell "AND2_A_XL_TSMC_HVTN"]} { define_cell \ -input { A B } \ -output { Z } \ -pinlist { A B Z } \ -delay delay_template_7x7 \ -si_immunity_i_emplate_7x7 \ AND2_A_XL_TSMC_HVTN Cell Definition	<pre># delay arcs from A => Z positive_unate combinational define_arc \ -vector {RxR} \ -related_pin A \ -pin Z \ AND2_A_XL_TSMC_HVTN # delay arcs from A => Z positive_unate combinational define_arc \ -vector {EvEl \ -vector {EvEl \}</pre>	
define_leakage -when "!A&!B" AND2_A_XL_TSMC_HVTN define_leakage -when "A&!B" AND2_A_XL_TSMC_HVTN define_leakage -when "!A&B" AND2_A_XL_TSMC_HVTN define_leakage -when "A&B" AND2_A_XL_TSMC_HVTN	-vector (r.x.) (-related_pin A \ -pin Z \ AND2_A_XL_TSMC_HVTN # delay arcs from B => Z positive_upate combinational	
<pre># power arcs from => A hidden define_arc \ -type hidden \ -vector {Rxx} \ -pin A \ AND2_A_XL_TSMC_HVTN</pre>	<pre># defay arcs from b => 2 positive_unate combinational define_arc \ -vector {xRR} \ -related_pin B \ -pin Z \ AND2_A_XL_TSMC_HVTN</pre>	
# power arcs from => A hidden define_arc \ -type hidden \ -vector {Fxx} \ -pin A \	<pre># delay arcs from B => Z positive_unate combinational define_arc \ -vector {xFF} \ -related_pin B \ -pin Z \ AND2_A_XL_TSMC_HVTN</pre>	Deleveres
AND2_A_XL_TSMC_HVTN # power arcs from => B hidden	}	Delay arcs
define_arc \	define_template -type delay \ -index_1 {0.0224 0.0608 0.12 0.32 0.72 1.6 3.0 } \ -index_2 {0.0014 0.003 0.0062 0.0125 0.0251 0.0504 0.101 } \ delay_template_7x7	
<pre># power arcs from => B hidden define_arc \ -type hidden \ -etype Kalden \</pre>	define_template -type power \ -index_1 {0.0224 0.0608 0.12 0.32 0.72 1.6 3.0 } \ -index_2 {0.0014 0.003 0.0062 0.0125 0.0251 0.0504 0.101 } \ power_template_7x7	
-pin B \ AND2_A_XL_TSMC_HVTN Dynamic power arcs	define_template -type si_immunity \ -index_1 {0.224 0.608 1.2 3.2 7.2 16.0 30.0 } \ -index_2 {0.0014 0.003 0.0062 0.0125 0.0251 0.0504 0.101 } \ si_immunity_template_7x7	Templates

Liberate Example Tcl File

set rundir \$env(PWD) set CORNER tt set VOLTAGE 1.2 set TEMPERATURE 25 set cell AND2_B_XL_TSMC_HVTN

Create the directories Liberate will write to. exec mkdir -p \${rundir}/LDB exec mkdir -p \${rundir}/LIBRARY exec mkdir -p \${rundir}/DATASHEET exec mkdir -p \${rundir}/VERILOG

set_operating_condition -voltage \$VOLTAGE -temp \$TEMPERATURE

Load template information for each cell
source \${rundir}/TEMPLATE/cern_cmos8rf_hd_tsmc_hvtnW_v120_tt_25C_hvtn.tcl

read_spice \$rundir/MODELS/hspice/include_\$CORNER\.sp

read_spice -format spectre \${rundir}/CELLS/cern_cmos8rf_hd_tsmc_hvtnW_nwsx.sch.scs

char_library -ecsmp -si -cells \${cells} -thread 8

write_ldb \${rundir}/LDB/\$SOURCE_LIBRARY_\$VOLTAGE\V_\$TEMPERATURE\C_\$CORNER.ldb

write_library -overwrite -ecsmn -si \${rundir}/LIBRARY/\$SOURCE_LIBRARY_\$VOLTAGE\V_\$TEMPERATURE\C_\$CORNER_ecsm_si.lib

write_verilog \${rundir}/VERILOG/\$SOURCE_LIBRARY_\$VOLTAGE\V_\$TEMPERATURE\C_\$CORNER\.v

write_datasheet -format html -dir \${rundir}/DATASHEET/\$SOURCE_LIBRARY_\$VOLTAGE\V_\$TEMPERATURE\C_\$CORNER test

Output files AND2 .lib / .v

	_				
cell (AND2_A_XL_TSMC_HVTN) {		`timescale 1ns/	/10ps		
area : 0;			1000		
leakage_power() {		`celldefine			
value : 0.0891823;		module AND2			
when : "!A&!B";		module AND2_		\mathcal{F} ($\mathcal{L}, \mathcal{R}, \mathcal{D}$),	
}			output Z;		
leakage_power () {			input A D.		
when · "A&IR"·			прига, в,		
}					
leakage_power () {					
value : 0.146063;			// Function		
when : "!A&B";			and (Z. A. B):		
/ leakage_power(){			aa. (<u>=</u>) / i) = //		
value : 0.217761;					
when : "A&B";			// Timing		
}			// 1111115		
pin (Z) { direction : output:			specify		
ecsm gndres : 2.84782:				spacearam tod Λ $7 - 0$:	
ecsm_noise_cap : 0.000606332;				specharani tpu_A_2 = 0,	
ecsm_vddres : 7.98722;				specparam tpd B Z = 0;	
function : "(A * B)";					
max_capacitance : 0.101;					
timing () {				(A => Z) = tpd_A_Z:	
related_pin : "A";					
timing_sense : positive_unate;				(B => Z) = tpd_B_Z;	
timing_type : combinational;			endspecify		
(1000000000000000000000000000000000000			endop een y		
index_2 ("0.0014, 0.003, 0.0062, 0.0125, 0.0251, 0.0504, 0.101");		endmodule			
values (\		`endcelldefine			
"0.0778087, 0.0943178, 0.126192, 0.188057, 0.311119, 0.557708, 1.05057", \		chacenaenne			
"0.0864114, 0.102866, 0.134701, 0.196585, 0.319701, 0.566341, 1.05924", \ "0.0080274, 0.115241, 0.147007, 0.200052, 0.222114, 0.578226, 1.07177", \					
0.0363374, 0.113341, 0.147037, 0.206335, 0.332114, 0.376620, 1.07177, \					
"0.150635, 0.168129, 0.200259, 0.261964, 0.385234, 0.63214, 1.12516", \					
"0.175095, 0.19526, 0.229331, 0.291785, 0.4152, 0.66214, 1.15554", \					
"0.181677, 0.205527, 0.244012, 0.30901, 0.434542, 0.683591, 1.17743" \					
); }					
ر ۱۰۰۰۰۰					
1:1-					\ <u>/</u>
dII.					.v

Datasheet output AND2

Max Cap(pf)

Z

0.10100

AND2_A_XL_TSMC_HVTN

test Cell Library: Process , Voltage 1.20, Temp 25.00

Pin Cap(pf)

В

0.00148

А

0.00153

Power Information

Internal switching power(pJ) to Z rising :

Coll Name	Innut	Power(pJ)			
Cen Name	mput	min	mid	max	
AND2_A_XL_TSMC_HVTN	А	0.00384	0.00415	0.01111	
	В	0.00405	0.00417	0.01060	

Internal switching power(pJ) to Z falling :

Call Name	Innut	Power(pJ)			
Cen Mane	mput	min	mid	max	
AND2_A_XL_TSMC_HVTN	А	0.00384	0.00418	0.01101	
	В	0.00492	0.00527	0.01198	

Passive power(pJ) for A rising :

Passive power(pJ) for A falling :

Coll Name	Power(pJ)			
Cen Manie	min	mid	max	
AND2_A_XL_TSMC_HVTN	0.00002	0.00002	0.00000	

Leakage Information

Truth Table INPUT OUTPUT AB

0 x

1 0

1

1

Ζ

0

0

1

Pin Capacitance Information

Cell Name

AND2_A_XL_TSMC_HVTN

Cell Name	Leakage(nW)			
	Min.	Avg	Max.	
AND2_A_XL_TSMC_HVTN	0.08918	0.14561	0.21776	

Delay Information

Delay(ns) to Z rising :

Cell Name	Timing And Div)	Delay(ns)		
Cen Name	Timing Arc(Dir)	Min	Mid	Max
AND2_A_XL_TSMC_HVTN	A->Z (RR)	0.07781	0.23498	1.17743
	B->Z (RR)	0.08329	0.23490	1.16232

Delay(ns) to Z falling :

Cell Name	Timing Ano(Din)	Delay(ns)		
CentVanie	Tinning Arc(Dir)	Min	Mid	Max
AND2_A_XL_TSMC_HVTN	A->Z (FF)	0.07199	0.19680	0.85873
	B->Z (FF)	0.08133	0.21189	0.89763

Cell Name mid min max AND2_A_XL_TSMC_HVTN 0.00001 0.00001 0.00001

Power(pJ)

Passive power(pJ) for B rising :

Call Name	Power(pJ)			
Cen Name	min	mid	max	
AND2_A_XL_TSMC_HVTN	0.00025	0.00025	0.00025	

Passive power(pJ) for B falling :

Cell Name	Power(pJ)			
Cen Name	min	mid	max	
AND2_A_XL_TSMC_HVTN	-0.00021	-0.00024	-0.00025	

Liberate LV (Library Verification)

- Data consistency library checking
- compare_library:
 - Compares in two libraries textually and graphically
 - CCS or ECSM delay vs NLDM
 - Supports functional overlap
- validate_data_range
 - Check data is within range, not zero, negative etc
- validate_monotonicity
 - Ensures that library tables are monotonically increasing
- validate_sdf
 - Check SDF back-annotation to Verilog/VHDL simulation data consistency

compare library

• Comparison of AND2 cell schematic vs extracted view

PVT: Process

• Comparison of AND2 gate

Comparison 1.2V ff/tt 25C

Comparison 1.2V ss/tt 25C

PVT: Voltage

• Comparison of AND2 gate

Comparison 1.1V vs 1.2V tt 25C

Comparison 1.3V vs 1.2V tt 25C

PVT: Temperature

• Comparison of AND2 gate

Comparison 1.2V tt 80C/25C

Comparison 1.2V tt -20C/25C

20th May 2015

Liberate LV Validation - Timing and Power

- Compares Spice vs STA (ETS, Tempus, PrimeTime)
 - Text, Excel or Html reporting and Graphical comparison display (lcplot)
 - Arbitrary chain length, user controllable interconnect RC and fanout

All slews/loads or defined slews/loads or interpolated or extrapolated slew/loads

- Also supports SSTA Vs Monte Carlo simulation
- Power Correlation for NLPM & ECSMP via EPS

validate_library example

set rundir \$env(PWD)
set CORNER tt
set SPECTRE_MODELS_FILE "\${rundir}/MODELS/tsmc13rf_\$CORNER\.scs"
set SPECTRE_CMD "/eda/cadence/2014-15/RHELx86/MMSIM_13.11.252/bin/spectre"

set_operating_condition -voltage 1.2 -temp 25

set cells {AND2_A_XL_TSMC_HVTN}
set modelspectre \$SPECTRE_MODELS_FILE
set subckts \${rundir}/CELLS/lat.scs

set_var extsim_cmd "\$SPECTRE_CMD -64"

set_var extsim_cmd_option " +aps +spice +mt=2 +lqt 0 +errpreset=conservative -format psfbin"
set_var extsim_deck_dir "\${rundir}/temp/Spectre_decks_\$CORNER"

10 AND2 cells R=10 Ω and C=100fF

10 AND2 cells R=1 Ω and C=10fF

Applications for HEP

- Re-characterize cells:
 - New PVT corners (temperature, voltage, corner)
 - New Models (model with radiation variation)
 - Modify input slew or output load templates
- Characterize new cells:
 - New Library: CERN 130nm HD library,...
 - Complex combinatorial gates: SEU voters,...
 - Synchronous cells: Dynamic flip-flops, SEU DFF,...
 - To improve digital verification accuracy (GBT/ALPIDE)
- Characterize new mixed-mode blocks

Examples on HEP applications

- Medipix3
- Timepix3
- Velopix
- GBT serializer
- ALPIDE

Medipix chip family

CÉRN

First steps towards made library

Medipix3.0 (130nm) was designed in Full custom mode

- Pixel architecture required that the basic cell was formed by 4 pixels
- >1 year to layout the pixel
- Digital verification done by gate level simulation only
 - Gates characterized "by hand"
- Chip debugging showed failure in some operating modes due to poor characterization of cells

Medipix3.0 (2009)

Medipix3.0 pixel counter (24 bits) + control logic

- Synthesized using the CERN IBM 130nm Standard Cell Library (CMOS8RF)
- Area is too big (52 x 33.6) → ~60% pixel area
- High static (leakage) power consumption:

VDD	Temp	Leakage in cell	leakage In Chip
1.4 V	125 C	22.5 μW	1.5 W !!!
1.5 V	25 C	223 nW	14.6 mW
1.6 V	-55 C	470 pW	30 µW

A high density low power 130 nm digital library

- The Medipix3RX redesign required significant changes in the digital part of the pixel (designed as a full custom layout)
- Foundry standard digital cell 130nm library available
 - Too big cells: The foundry digital library has large cells since is targeted for a general purpose and high speed design ~800MHz !!
 - Too much leakage power: The foundry digital library used regular transistors
- A custom made high density library (SC_130nm_XL) was designed with the initial idea of using it in the Medipix3RX pixel but with a huge potential impact in later developments (Timepix3, Velopix...)
- Main actions:
 - Reduce cells height \rightarrow No need for big buffers (speed)
 - Keep all transistor small or minimum size (W/L=0.28/0.12)
 - ADD NV and PV layers \rightarrow Low power transistors (no area penalty)

RVT vs LP : VDD vs Power @25C

RVT vs LP : Temp vs Power @VDD=1.2V

Simulated Delay

- @ VDD=1.5 the rise/fall times difference between Rvt and LP are:
 - − ~3ps (0 \rightarrow 1)
 - − ~10ps (1 \rightarrow 0)
- At lower VDDs the delays are more important

CERN 130nm HD Library

- Physical specs: ۲
 - "Mainly" Low power transistors
 - Row Height is fixed to 2.4 µm
 - Well Tap library
- Maximum frequency < ~700 MHz (@1.5V) •
- Encounter Library Characterizer (ELC) used: •
 - Full Synopsis library:
 - lib, ecsm, ecsm si and ccs
 - delays, static and dynamic power
 - Corners:
 - 1.2V : -55C FF, 25C TT and 125C SS
 - 1.5V : -55C FF, 25C TT and 125C SS
 - Verilog library
 - I FF files
 - **HTML** documentation
- ~50 cells available in the library

CERN HD Special cells (I)

 Cells with "non-standard" functional behaviour can be integrated

CERN HD Special cells (II)

- Cells with non-standard row height are also possible to integrate:
 - Row height multiple (2.4 μ m)
 - Pitch length multiple (0.4 μ m)

Medipix3 pixel counter (24 bits) + control logic

- Synthesized using the SC_130nm_XL library
- Area (52 x 16.8) → ~29%
 pixel area
- Low cell leakage power

VDD	Тетр	Leakage in cell	leakage In Chip
1.5 V	25 C	2.5 nW	163 μW
1.2 V	25 C	1.15 nW	75.3 μW

Medipix3.0 vs Medipix3RX

Medipix3.0 (2009)

Medipix3RX (2011) using SC_130nm_XL

20th May 2015

Medipix3RX counter using SC_130nm_XL library

Medipix3 Counter Specs

	Medipix3.0	Medipix3RX
Counter Type	Configurable Binary Ripple Counter with full dynamic range coverage	Configurable Linear Feedback Shift Register (LFSR) with full dynamic range coverage
Binary output	YES	NO
Data and Clock multiplexing	YES	NO
Pixel Counter Depths	2x1bit (1) 2x4bit (15) 2x12bit (4095) 1x24bit (16777216)	2x1bit (1) 2x6bit (63) 2x12bit (4095) 1x24bit (16777216)
Overflow control	YES (1,4,12 and 24 bits)	YES (1,6,12 and 24 bits)
LFSR Decoding	No	1 bit 6 bit [5:0] mode LUT[64] → [5] ⊕ [4] 12 bit [11:0] mode LUT[4096] → [11] ⊕ [5] ⊕ [3] ⊕ [0] 24 bit [23:0] mode → 2x12 bit LUT[4096]
Glitch Control	Narrow Disc pulses (Hits at Threshold) Multi-Hit Shutter ON/OFF	Narrow Disc pulses (Hits at Threshold) Multi-Hit Shutter ON/OFF
Layout	Full custom	Synthesized + automatic Place and Route
Routing	Local Routing: M1 to M4 Global Routing: M5 Power distribution: M6,M7,M8	Local Routing: M1 to M4 Global Routing: M4 Power distribution: M5,M6,M7
Layout size per pixel (mean)	~1100 μm² (~36.4% pixel area)	~1075 μm² (~35.6% pixel area)

Timepix3 motivation

- Main driving requirements:
 - 1. Simultaneous TIME (TOA) and CHARGE (TOT) information per pixel
 - 2. Minimize dead time \rightarrow Event-by-event readout and 0-supressed
 - 3. Monotonic TOT in both detection polarities
 - 4. Improve time measurements resolution
- Experience gained in the design of the Medipix3 chip (2009):
 - Technology (130nm CMOS)
 - Building blocks recycled (CERN's HD Standard Cell library, DACs, ...)
- Designed by CERN, Nikhef and Bonn University with the support of the Medipix3 Collaboration

Timepix3 Pixel Schematic

imepix3 Floorplan

20th May 2015

Timepix3 Periphery Integration

- Digital on top design
- All analog full custom blocks require previous instantiation in Encounter:
 - Abstract view \rightarrow LEF, DEF
 - Liberty Library (.lib)
 - Liberate AMS not used (it didn't exist) but it would have help if available...
- The full periphery can be then integrated together inside the digital flow
- Full digital data path verification (with SDF) from discriminator output (pixel) to output IO pads

Timepix3 Pixel Logic design strategy

- Use CERN HD Library
- Special cells:
 - CLK_Q_RVT_XL: Fully integrated inside HD Library
 - VCO:
 - Abstract view
 - Capacitive IO definitions inside dedicated .lib file
- Full digital chip verification
 - SDF signoff back annotated delays
 - 3 corners:
 - 1.5V tt 25C
 - 1.6V ff -55C
 - 1.4V ss 125C

Pixel Data readout

• Data readout in Data Driven and Frame Based readout works as predicted in post-layout digital simulations

Timepix3 testbeam data

Swiss technology comparison

Timepix (2006)

Thanks to the CERN HD Library !!!

Timepix3 (2013)

Introduction

- VeloPix: Hybrid pixel detector (HPD) Readout ASIC for the LHCb VELO upgrade
- The ASIC reads out all bunch crossings at 40 MHz
- Installation planned for LS2

The VELO upgrade:

- Approx. 2.85 Tbit/s
- 26 module pairs
- ➢ 624 ASICs
- ➤ 41 Mpixels*

*Nokia Lumia 1020 (2013) also has 41 MP camera

VELOpix

- Foreseen for pixel upgrade to LHCb VELO (Installation during LS2)
- Based heavily on experience with Timepix3 but with some important differences
 - Up to 800Mhits/s/chip (cf 80Mhits/s/chip)
 - 4 serialisers at 5Gbps each \rightarrow binary hit information only
- Change of technology decided 1 year ago: IBM 130nm \rightarrow TSMC 130nm
 - − New HD library developed (IBM \rightarrow TSMC):
 - Power supply: 1.5 V \rightarrow 1.2 V
 - Devices used PMOSHVT/NMOSHVT → PMOS/NMOSHVT improves radiation robustness and balances driving strength
 - Track pitch: 0.4 x 0.4 $\mu m \rightarrow$ 0.41 x 0.46 μm due to different min pitch rules and via sizes
- Status:
 - Submission of full chip foreseen in Q2 2015

$IBM \rightarrow TSMC$

- >60 cells in CERN TSMC HD library
- Characterized and verified with Liberate tool

- TMR in pixel configuration bits and in all control logic
- M1-M4 local and global routing and M5-M8 dedicated to power distribution
- ~5000 gates
 - 35% memory (flip-flops or latches)
 - 55% logic
 - 311 voters
- 4% smaller that Timepix3 pixel digital block \rightarrow 2.88µm extra for the analog FE block.

CÈRN

ALPIDE matrix read-out circuit

C. Marin

- ALPIDE is the new ultra low-power, CSA-based MAPS for the ALICE Upgrade
- ALPIDE matrix read-out circuit \rightarrow Motivation
 - Zero Suppressed Read-out
 - Read-out only the fired pixels \rightarrow Encoded Address
 - Read-out on the same pixel area
 - Fast Read-out
 - Low Power

PRIORITY ENCODER READ-OUT

Basic block

COMPARISONS & DIFFERENCES BETWEEN Implementation in pALPIDE V1 & V2

- Pixel size: 28 x 28 μm²
- 1024 columns x 512 rows
- Full custom → <u>ELC and ALTOS</u>
 - Custom latch as Storage Element.
 - Priority encoder circuit per double column
- Fired pixels address encoded of 10 bits every clock cycle
- Max. Freq 10 Mhz
- Manual placement & Routing on 4 Metal Layers.
- Characterization used only for digital simulations
- Net capacitance extracted using liberty files and generating SDF for post layout simulations

COMPARISONS & DIFFERENCES BETWEEN Implementation in pALPIDE V3

- Pixel size: 29.24 x 26.88 μm²
- 1024 columns x 512 rows
- 3 Full custom FF as Storage Element \rightarrow ALTOS
- Priority encoder circuit per double implemented with TowerJazz STD cells library
- Fired pixels address encoded of 10 bits every clock cycle
- Max. Freq 50 Mhz
- Seimi-automatic Placed & Routed on 4 Metal Layers
 - Analog → Full Custom
 - − Digital \rightarrow P&R flow
- The custom FFs has been characterized modeled and simulated on digital environment
- Digital pixel logic implemented using standard cells from ToweJazz

Conclusions

- What library characterization enables?
 - Mixed-mode designs \rightarrow true digital verification
 - Allows modification or addition of new cells in the digital library
 - Complete std cell provider library files → add dynamic power, noise...
 - Add specific PVT corner to match application operating condition (radiation environment)
 - Integrate analog blocks inside digital flow (Liberate AMS)
- For analog designers (my case) helps to understand/trust the digital flow...
- All these tools are based in trusted device models and parasitic circuit extractions:
 - Silicon verification is required if any of above is not trusted

Acknowledgments

- T. Hemperek (Bonn University) transfer me his ELC knowledge used in FEI4 chip
- S. Bonacini (CERN) help me through out digital flow understanding
- P. Moreira and C. Marin
- Cadence for allowing to use some of their original material

Spare slides

ECSM model

- ECSM: effective current source model:
 - Uses characterized measurements of current and voltage (I/V curves) over multiple time intervals, with different combinations of input slew and output loading capacitance.
 - These I/V curves are used to create a more accurate output driver model, where each driver is represented as a voltagecontrolled current source.
- Models the effects of timing, noise, power, and variation

Timing Cell Arc Concepts

- All delay information in a library refers to an input-tooutput pin pair or an output-to-output pin pair defined as:
 - intrinsic delay: The fixed delay from input to output pins
 - transition delay: The time it takes the driving pin to change state. Transition delay attributes represent the resistance encountered in making logic transitions
 - slope sensitivity: The incremental time delay due to slow change of input signals